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Abstract

“Those who cannot remember the past are condemned to repeat it.”
(George Santayana)

In this paper, we show that keeping track of history enables significant improve-
ments in the communication complexity of dynamic network protocols. We present a
communication optimal maintenance of a spanning tree in a dynamic network. The
amortized (on the number of topological changes) message complexity is O(V ), where
V is the number of nodes in the network. The message size used by the algorithm
is O(log |ID|) where |ID| is the size of the name space of the nodes. Typically,
log |ID| = O(log V ).

Previous algorithms that adapt to dynamic networks involved Ω(E) messages per
topological change—inherently paying for re-computation of the tree from scratch.

Spanning trees are essential components in many distributed algorithms. Some ex-
amples include broadcast (dissemination of messages to all network nodes), multicast,
reset (general adaptation of static algorithms to dynamic networks), routing, termina-
tion detection, and more. Thus, our efficient maintenance of a spanning tree implies
the improvement of algorithms for these tasks. Our results are obtained using a novel
technique to save communication. A node uses information received in the past in
order to deduce present information from the fact that certain messages were NOT
sent by the node’s neighbor. This technique is one of our main contributions.
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1 Introduction

1.1 The Model

In this paper, we consider the classical model of dynamic asynchronous communication
networks. In such networks, communication between nodes is completely asynchro-
nous, and any sequence of network topological changes is possible [AAG87]. Dy-
namic networks are a good approximation for realistic network models. See, e.g.
[Fin79, MRR80, ACG+90] and Subsection 1.3.

The network is represented by a graph G = (V, E) where V is the set of nodes, and
E the set of edges (or links). We use n to denote |V | (when no confusion arises we
use O(V ) instead of O(|V |), etc.). Nodes communicate only by exchanging messages
over the edges. We assume that every node has a unique identity, termed Id. This is
also translated to a unique weight of each edge, which is the concatenation of the link’s
weight and the Ids of its endpoints (first the lower Id and then the higher one). We
assume, w.l.o.g., that each node knows the identities of its neighbors.

Atomicity of events handling: without loss of generality, we use the following com-
mon assumption for asynchronous networks: computation (including sending messages)
associated with an input event for a node is performed by the node before another event
happens. Input events in a node are the following: (1) the failure of an adjacent edge,
(2) the recovery of an adjacent edge, and (3) the reception of a message.

Faults: Edges may fail and recover. A faulty edge does not transfer messages, and
messages sent over it before it failed, are lost. (However, since this is an asynchronous
model, the sender does not know exactly when the edge failed; hence, if it sent some
message and after that was notified that the edge failed, it cannot know whether the
messages were delivered to the other endpoint or not). Whenever an edge fails, an
underlying lower-layer link protocol notifies both endpoints of this edge about the
failure, before the edge can recover. This means that an edge that fails, fails in both
directions. Similarly, each endpoint is notified of its edge recovery. A message can be
received only over an edge that is not faulty. If an edge (u, v) failed at u before some
messages sent by v to u have arrived, then these messages will never arrive, even if the
edge recovers.

Since there may be times where an edge (u, v) may be faulty at u but not at v,
it makes sense to sometimes consider the edge as a pair of two directed edges: (u, v)
and (v, u). Nevertheless, when no ambiguity arises, when we refer to a faulty edge, we
mean the undirected edge that is faulty at either one of its endpoints (or both). The
paper deals with the failure and recovery of edges. As we note at the end of Section 6,
the results also apply to the failure and recovery of a node and its memory.

Non-faulty edges: Messages transmitted over a non-faulty edge will either arrive, or
the edge will fail (will “become faulty”) at both endpoints. Messages that arrive over
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any given link arrive according to the FIFO discipline. However, no upper bound is
known for the arrival time of a message over a link. Hence, two independent messages
sent over two links may arrive in any order.

Complexity: In this paper we are interested in the following complexity measure: A
message sent by the algorithm contains O(log |ID|) bits, where |ID| is the size of the
name space of the nodes. Typically, log |ID| = O(log V ).

Definition 1.1 The amortized communication is the total number of messages sent by
the protocol, divided by the number of input events that occurred during the execution.

In other words, this is the “incremental” communication cost, in terms of the number
of messages caused by a single topological change.

1.2 The Problem Statement

We assume that the network starts with no edges. A node receives, as input, a (possibly
infinite) sequence of local events called topological changes. Each such change is the
insertion (recovery, becoming operational) or deletion (failure) of one of its own edges.
Note that a node is aware of all its local events, but is completely unaware of the local
events happening at other nodes, unless those events are communicated to it by those
other nodes. For a deletion event, there exists some time where the edge is deleted at
both its endpoints.

Each node maintains in its local memory a subset of the set of all its own emanating
edges. We term the edges in this subset real tree edges. See Drawing 3. For that
purpose, we consider each edge (u, v) to be composed of two directed edges: (u, v),
directed from u to v, and (v, u), directed from v to u. Note that (directed) Edge (u, v)
becoming a real tree edge is a local decision of its endpoint u. No other node is aware
of that, unless this fact is communicated to it.

u v

w q

Real tree
edges:

(v,u), (v,q)

Real tree
Edges:

Real tree
edges:

Real tree
edges:

(u,v)

(w,q)

(q,v), (q,w) 

Real tree edge
Non-tree edge

Drawing 3: a real tree

When no ambiguity arises, we sometimes talk about the undirected real tree edge
(u, v). This term refers to an edge that is (1) not deleted at any of its endpoints (that
is, non-faulty), and (2) this edge is considered a real tree edge by either one of its
endpoints, or by both of them.
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Definition 1.2 The collection of (the undirected) real tree edges is termed the real
forest.

A connected component of the real forest is termed a real tree.

The task of the tree maintenance algorithm is

(1) to maintain the invariant that the real forest is indeed a forest at all times;

(2) if the topology changes cease, to have the forest converge to a spanning tree.

In practice, there is no need to require that the changes cease permanently; stability
for “long enough” periods suffices. This model realistically describes the mode of
operation in existing networks, where topological changes occur in bursts.

A spanning tree is an important data structure in a communication network, often
used for broadcast of information through the network, routing, and control. Since the
communication graph of the network is constantly changing, it is important to update
trees in order to adapt communication paths to those changes. A spanning tree protocol
was used in networks of DEC. A similar protocol also became an IEEE standard. Both
protocols were developed by Radia Perlman [P99]. These protocols were based on
the sequential algorithm of Dijkstra (e.g. [Eve79]). Hence, the tree is built from a
root that is preconfigured. A distributed maintenance was first proposed for the IBM
PARIS experimental network [ACG+90, CGKK95], and later used in the IBM NBBS
ATM network [MICG95]. Theoretically, the complexity of this algorithm is unbounded,
since it uses counters that are incremented with every topological change. Spanning
trees are also used, for example, in CISCO networking products, see e.g. [BS04].
Recently, there are suggestions to use distributed tree maintenance for organizing ad
hoc wireless networks. See, e.g. [GRSV03]. There is also interest in exploring the
possibility of maintaining a spanning tree to reduce the amount of routing information
exchanged by Internet routers, e.g. in OSPF. See, e.g. [IETF].

One can easily see that any dynamic spanning tree protocol requires Ω(V ) in amor-
tized communication complexity. (For example, consider two networks each being a
line of V/2 nodes, and V/2− 1 edges; assume that two edges now recover, merging the
two lines into one simple cycle; clearly, any distributed algorithm that does not send
at least about V/2 messages may result in either a cycle or a disconnected structure
rather than a spanning tree). In this paper, we show that the amortize communication
complexity is also O(V ).

1.3 Previous Approaches

The problem of computing on dynamic networks is one of the most well-studied prob-
lems in the area of distributed computing. See, e.g. [Gal76, Gal77, MS79, JM82, Gaf87,
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AAG87, AS88, Awe88, AAM89, Hum81, Gar89, CRKG89, RF89]. The main motiva-
tion for studying dynamic networks rather than static networks is that they are a better
model for real networks, which experience failures [FLP85] and addition of new links.
There is also a stronger motivation for the efficient implementation of a repetitive task,
the typical task in dynamic networks, rather than a one-time task. Various tasks need
to be computed in dynamic networks, such as shortest paths, minimum spanning tree,
BFS, DFS, maximum flow, minimum cost flow, among others.

Since, in the early days of the field, computing in dynamic networks appeared to
be a hard task, many researchers approached the problems in dynamic networks in the
following way:

1. Find an efficient “from-scratch” solution in a static asynchronous network.

2. Design a “Reset” procedure, that “blasts away” the existing computation, and
restarts the new computation “from scratch”.

It is interesting that computing from scratch for many important functions, e.g.,
a spanning tree, requires Ω(E) communication [AGPV90] or even Ω(E + V log V )
[KMZ89]. Thus, the method above is doomed to Ω(E) amortized communication.

However, an Ω(E) lower bound does not necessarily apply to the amortized com-
munication complexity of dynamic network protocols. Intuitively, this is because the
latter reflects the (incremental) amount of work performed to adapt to a single topo-
logical change. Since the work is not performed from scratch, we can benefit from the
knowledge gained in the past and thus economize on communication. Our goal here
is to prove that this is indeed possible, i.e., adapting to a single change is easier than
repeating the whole computation over the newly formed topology. In this paper, we
demonstrate this for the maintenance of a spanning tree. Given an algorithm that
maintains a spanning tree, the preliminary version of this paper [ACK90] was the first
to show that adapting to a single change is easier than computing from scratch, not
only for the maintenance of a spanning tree, but also for the many other tasks that
require an Ω(E) communication when computed from scratch.

It is well known that this is the case in sequential computation. A famous example:
Frederickson [Fre83] shows how to maintain a dynamic minimum-spanning tree with

(amortized cost) O
(√

E
)

computations per input change, while constructing a tree

from scratch requires Ω(E) computations.

Unfortunately, in the distributed computation model, it was far from obvious that
it was possible to reduce the incremental cost below the cost of solving the problem
from scratch. In fact, it took a long time (from 1976 [Gal76] till 1987 [AAG87]) just
to implement the “blast away” itself in O(E) per topology change. One of the by-
products of this paper is improving the amortized message complexity of the “reset”
task itself further from O(E) to O(V ), thereby making it message-optimal.
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The best previous solution for the task of maintaining a spanning tree in a dy-
namic network [AAG87] requires O(E+V log V ) messages per topological change. This
matches the performance of protocols that solve the problem “from scratch”. Another
disadvantage in using [AAG87] for a dynamic spanning tree is that even parts of the tree
that do not suffer topological changes may be replaced as a result of a change; this is
often undesirable. In [AAG87], bounded message size was assumed (as in the current
paper). Previous work that allowed unbounded message size [Gal77, MS79, KM86]
does not achieve better performance. The [AAG87] protocol adopts the “classical”
[Gal76],[Fin79],[Seg83],[Gaf87], [GA87], blast away approach mentioned above for the
problem of designing a dynamic protocol. With that approach, one clearly cannot
improve over the performance of the static protocol.

There were previous attempts in the literature to save some of the waste associated
with the blast-away approach by keeping track of the past computations and using them
in the future [MS79, SG89, Gaf87, AS88]. For example, in [SG89], a new principle was
introduced to decide which message is relevant and which is obsolete. In [Gaf87], this
is generalized to a family of principles. However, [Gaf87] also conjectured that in terms
of worst-case complexity, the blast away method is the best algorithm. We disprove
this conjecture in the present paper.

Oddly enough, previous methods which interpolate the information from the past
actually proved less efficient than the naive “blast away” method of [AAG87] in terms
of communication complexity. Intuitively, the reason is that the mixing of the results
of the old computation with that of the new one “confuses” the nodes and thus they
make wrong decisions. Those decisions cause them to send messages that have to be
followed later by correction messages. We overcome these phenomena in this paper.

1.4 Our Results

The main result in this paper is that by keeping track of history, it is possible to
construct a communication-optimal protocol for maintaining a spanning tree.

Theorem 1.1 A spanning tree can be maintained with O(V ) amortized communica-
tion.

This proves that amortized communication complexity, i.e., the incremental cost
of adapting to a single change, can be smaller than the communication complexity of
solving the problem from scratch. No similar result has been previously reported.

We introduce a dynamic tree maintenance algorithm that maintains a loop-free
forest structure at all times, and converges to a spanning tree when the topological
changes stop (for a “sufficiently long” time). The amortized message complexity is
O(V ).
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The trees generated by old computations are not discarded when new topological
changes disconnect them. Instead, the disconnected parts are “glued” together to form
the new tree. Moreover, the “gluing” task uses the old tree for passing its messages,
thus achieving the O(V ) complexity. Hence the new computation is helped rather than
hindered by the results of the old computation.

Several problems arise in implementing the above approach. One is choosing the
gluing edges. Note that inherent in the asynchronous model, there are transient cases
where some nodes “have heard” of topological changes, while others have not. Since
different nodes have different information they may choose different edges, causing
either deadlocks or cycles in the “tree” if no special care is taken. Another problem
relates to sending updates about changes over the tree. That is, to preserve the O(V )
amortized complexity, a node must not receive the same information more than a
constant number of times. However, the tree edges are dynamically replaced by other
edges concurrently with the distributed process of the updates flowing over the tree.
How can we, nevertheless, prevent each node from receiving such an update from several
directions, and thus, more than once?

Both of the above problems are consistency problems in the environment of asyn-
chronous and dynamic networks. Our solution is a novel tool, called tree belief principle.
It enables neighboring nodes to resolve inconsistencies between their views of the forest
structure.

Given an efficient algorithm for dynamic tree maintenance, many tasks can be
performed efficiently. In [ACK90], it was shown how to use such a tree to perform
topology update with O(V ) amortized communication complexity. Topology update is
the task where each node learns the network graph. It is heavily used in communication
networks for computing next hop routing tables [MRR80, ACG+90, CGKK95, T02,
HS89]. Moreover, when a node has learned the network graph, the node can perform
any sequential graph algorithm on that graph. Thus, the computation of any graph
problem on the network graph is trivially reduced to topology update. The solution
for topology update was generalized in [ACK90] to O(V ) amortized communication
maintenance of any polynomial size local database. This implies the immediate solution
of any problem for which the input is the network graph. Moreover, it also solves any
problem for which the input includes the network graph as well as any attribute (of
polynomial size) associated with nodes and/or edges.

Another task for which the dynamic tree can be used is the above-mentioned Reset
procedure ([Fin79]), improving its amortized communication complexity from O(E)
[AAG87] to O(V ). This improves (in the dynamic networks model) the amortized
complexity of other tasks that relay on the Reset procedure, e.g., the complexity of
the end-to-end communication problem [AG91, AAG+, AG88] is improved from O(E)
[AAG87] to O(V ).

Broadcast is the task of delivering a message to every node in the network. Multicast
is the task of delivering a message to a specific subset of the nodes. Both tasks are highly
necessary in communication networks, and are greatly simplified given an algorithm to
maintain a spanning tree [AGKK]. Synchronizers [A85] and clock synchronization are
also examples of tasks that benefit from dynamic spanning trees.
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1.5 Bounded Counters

We follow the recommendation of [AAG87, AG88, AAG+, AMS89, AAM89, AGH90,
AG91, AGR92], in not using unbounded counters. “Unbounded counters” refers to
counters which are incremented every time a topological change occurs in the network,
theoretically counting to “infinity”. However, such counters are frequently used in
practice, since a relatively small counter (say, 128 bits per message) suffices to represent
a huge number of topological changes.

Considering the above, one could question the practical value of attempts to avoid
the use of such unbounded counters. This is even more questionable regarding the fact
that the results in many previous papers can be trivially obtained (or even improved
significantly) if unbounded counters are permitted [AAG87, AG88, AMS89, AAM89,
AGH90, AG91, AGR92]. The results of this paper, however, are not trivialized if
unbounded counters are permitted. In fact, the results reported here, as well as results
based on this paper, improve the results in papers that do use unbounded counters
[BGJ+85, Vis83, CCK88, BO99].

There are also practical reasons for avoiding the use of unbounded counters. One of
them is to overcome a potentially fatal case of failure: that of a loss of nodes’ memory
(and consequently, forgetting the highest-used counter values). Another is the difficulty
of handling such counters in a specialized hardware switch in fast networks [CGKK95].

1.6 Practical Applications of Our Work

Recall that Requirement (2) in Subsection 1.2 is only eventually required. On the other
hand, Requirement (1) (termed Loop Freedom) is required to hold at all times. This is
also the case with the following additional requirement:

Path-Preservation: An edge ceases being a "tree-edge" only in the case where

it fails.

Loop-Freedom is essential in the environment of hardware-based fast packet switch-
ing [Tur88, CG88, ACG+90, CGK88, CS88]. Path-Preservation is important in a vir-
tual circuit-switching environment. The properties of loop freedom and path-preservation
have been studied for a long time [Gal77, MS79, SS81] in the networking literature.
Our protocol is the first one that achieves those properties with bounded complexities.

1.7 Structure of the Paper

Sections 2 and 3 explain the tree maintenance algorithm. Section 2 presents the al-
gorithm except for two subroutines FIND and UPDATE. The UPDATE subroutine,
which is our main technical contribution in this paper, is presented in Section 3 together
with the FIND subroutine. Section 4 explains the distributed implementations of the
modules. Section 5 and Section 6 contain the proofs of correctness and the message
complexity analysis. The appendices contain some details about known techniques
used applied by some out the subroutines, and a pseudo code (a high-level description
of that code appears in the body of the paper).
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2 Preliminaries

In Subsection 2.1, we describe the main program of the algorithm. It is extremely
simple, though it contains a surprising action: one of the subroutines (UPDATE) is
called twice in a row. This seemingly redundant operation is crucial for the correction
of the algorithm. UPDATE, one of the main contributions of the paper, is described
in Section 3, together with the complementing Subroutine FIND.

2.1 Informal Description

For ease of description, we first describe the tasks performed by the algorithm as
if the algorithm were not distributed. (The computational complexity of the “non-
distributed” algorithm does not interest us.) Recall that the most novel part of the
algorithm appears in the next section (3).

2.1.1 Overview

Recall that the real forest maintained by the algorithm is composed of locally marked
edges. The failure of an edge causes it to become unmarked, and disconnects a real
tree into two real trees. Multiple topological changes can create a forest of many trees.
The algorithm “glues” distinct real trees of this forest into larger real trees, by marking
edges that connect them.

Following [GHS83] (the construction of a spanning tree for a static network), we
adopt a concurrent implementation of Kruskal’s algorithm (see, e.g., [Eve79]): Each
tree tries to connect to other trees using its minimum-weight outgoing edge, namely the
minimum-weight edge with exactly one endpoint belonging to that tree. We attempt
to mark an edge which is the minimum outgoing edge of the real trees of both its
endpoints.1 This operation is repeated as long as there are more than one real tree in
a connected component of the network.

In a distributed network, the traditional method of detecting that an edge is indeed
outgoing would be (1) to give each real tree a name known to all its nodes, and (2)
to have the endpoints of every edge exchange messages to compare the names of the
real tree in which they are members [GHS83]. (If they are members of real trees with
different names, then this is an outgoing edge.) We cannot use this approach since it
clearly leads to a message complexity of Ω(E).

The primary new technique we use to reduce the complexity from O(E) to O(V ) is
a method to update dynamic data structures, so that finding an outgoing edge will take
only O(V ) messages. The data-structure is explained in Subsection 3.1, the update
in Subsections 3.3 and 3.4, and finding the minimum outgoing edge in Subsection 3.5.
Before describing them, let us summarize the main program.

1We say “attempt”, since, at the same time that we use the minimum edge to merge two trees, a
still lower weight edge may recover. This may render the merger edge non-minimum. If no special
care is taken, this may cause not only “non-minimum” but also deadlocks. Overcoming the difficulties
this phenomena can cause is discussed in Section 4.2 and the proof of Lemma 5.16.
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2.1.2 Main Program

The high-level description of the algorithm outlined above appears in Figure 1. Details
about the distributed implementation are deferred to Section 4. At this point, we just
state that the algorithm maintains the invariant that every real tree has a root, one of
its nodes, that manages the tree operations (similar to [GHS83]). The root invokes the
FIND distributed subroutine to find the minimum outgoing edge of a real tree. The
role of being a root is passed from node to node until the root is the endpoint of the
minimum outgoing edge. Then the root negotiates a merger with the node at the other
endpoint.

Subroutine UPDATE is invoked by the root in order to update a data structure,
such that the complexity of Subroutine FIND will be reduced. A crucial action of the
algorithm is calling UPDATE both before calling FIND, and again after the two roots
agree on a merger. The first call has to do with the complexity of the algorithm, while
the second call is needed for the correctness of the algorithm. The reason is explained
in Subsection 3.3.

3 UPDATE and FIND

In this section, we present the primary new technique used for reducing the message
complexity—the subroutines used by the main program described in Section 2. Subsec-
tion 3.1 introduces the dynamic data structure used to reduce the complexity of finding
an outgoing edge. Subsections 3.2 and 3.3 describes the properties of the subroutines.
The UPDATE subroutine is described in Subsection 3.4, and the FIND subroutine in
Subsection 3.5.

Whenever a marked edge fails
unmark edge (*at the endpoints*)

Whenever two trees merge or a topological change occurs
call UPDATE (*correct tree replicas*)
(*when UPDATE terminates*) call FIND (*choose min outgoing edge*)

Whenever two trees choose the same minimum outgoing edge
for each of the trees separately, call UPDATE

(*when UPDATE terminates*) mark the chosen edge at both of its endpoints (*merge*)

Figure 1: Main algorithm

3.1 Basic Data Structures

Our goal is to achieve O(n) amortized message complexity. The approach is similar
to that of dynamic data-structures in sequential algorithms: the complexity of “find”
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operations is reduced significantly, at the expense of a slight increase in the cost of
“update”s. Intuitively, the update is used to let every node “know” the description
of the real forest. Thus, a node “knows” which of its neighbors is not in its real tree.
Hence, the edge to that neighbor is outgoing. Unfortunately, the actual algorithm is
more complex than that because of asynchrony. It may happen that a node will not
have the accurate description of its real tree. For example, by the time a node receives
a message that some edge left the real tree, that edge may have already rejoined. The
algorithm overcomes such cases.

Let us present our dynamic data structure in more detail. The description of the
real forest, maintained by a node, may be different than the actual set of marked edges
(real forest). Thus, we term it the forest replica of the node. However, the real forest
and the replica of Node v agree on v’s local edges. This is by definition: v’s own
adjacent edges that appear in v’s replica are exactly v’s marked edges.

If Node v’s forest replica includes several trees, still v itself and all its marked edges
belong to exactly one of these trees. We call this tree v’s tree replica. Intuitively, v’s
tree replica is an approximation of the real tree to which v belongs. The tree replica of
each node is the tool used by Subroutine FIND to identify the outgoing edges. Note
that a node’s forest replica may include other trees! They are used (by Subroutine
UPDATE) to lower the cost of updating the tree replicas when the trees rejoin. A tree
replica (as a part of a forest replica) is demonstrated in Drawing 4.

u v

w q

(v,q)(u,v)

(q,w) 

Real tree edge

Non-tree edge

Drawing 4: a forest and a tree replica

x

y

(x,y) 

u’s Forest 

replica:

(x,y) is not

In u’s tree

replica (but 

Is the the

Forest replica

The algorithm attempts to keep the tree replicas of all the nodes as “accurate”
(i.e., close to the real forest) as possible. To this end, a node that performs a change
in the marking of its adjacent edges (unmarking as a result of failure, or marking as a
result of “gluing” trees) updates its forest replica, and communicates the change over
the marked edges to its whole real tree, using Subroutine UPDATE. (This may not be
done immediately, this node first alerts the root to invoke UPDATE if the node is not
currently involved in an UPDATE execution.) A node instructs its neighbor to add an
edge to the neighbor’s tree replica using a list called “Add”, carried in a message called
“DIFF”. In a sense, the contents of such messages are also a part of the distributed
“data structure” held in the network. Let us define this distributed data structure
more precisely.
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This data structure is distributed over a real tree, and captures the collective view
of the nodes of this real tree. The distributed data structure consists of (1) items
stored in all the nodes of a real tree, as well as (2) items carried in “Add” lists in DIFF
messages.

Definition 3.1 Given a real tree at any given time during the execution of the algo-
rithm,

1. Let Unodes be the union of the tree replicas of the nodes in the given real tree (just
the tree replicas, not the other parts of the forest replicas).

2. Let Umsgs be the union of the “Add” lists of DIFF messages in transit on edges
of the given real tree.

The trees replicas’ union is the union of Unodes and Umsgs.

Note, that the above union contains the real tree itself (since every marked edge
appears in the tree replica of its endpoint). However, it may contain additional edges,
e.g., edges leading to other real trees. Intuitively, this tree-replica’ union of a real tree
contains every edge that is “believed” by some nodes in the real tree to belong to this
real tree (Drawing 5). The union includes an item of an “Add” list because the node
that sent this DIFF message “believed” that this edge was in the real tree at the time
the node sent the message.

u v

w q

(v,u), (v,q)

(u,z)
(u,v)

(w,q)

(q,r)

(q,v), (q,w) 

Drawing 5a: tree replicas union
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(q,w) 

(x,y) 

The union: { (u,v),(v,q), (q,w),(u,z), (q,r) }

Real tree edge

u v

w q

(v,u), (v,q)

(u,z)

Drawing 5b: tree replicas union
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Dashed lines mark edge and nodes

not In the real tree, but in the tree replicas union

Network
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tree and not in

tree replicas 
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3.2 Properties

The key properties of the subroutines (stated more formally and proven in Section 5)
are:
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• Subroutine UPDATE is called whenever a topological change occurs, or trees
merge (both before and after the trees merge). It updates the tree replicas before
the initialization of Subroutine FIND. Its key properties are:

1. While UPDATE operates in a real tree, no edges can be added to the real
tree, though the real tree can shrink as a result of failures of tree edges.
(Intuitively, this property is guaranteed by the main program: the real tree
does not merge with another while UPDATE is performed; thus, it cannot
grow; see the first line of Figure 1.)

2. The tree replica at each node upon the termination of UPDATE is a subset
of the real tree to which the node belonged upon invocation of UPDATE,
and a superset of the real tree upon termination of UPDATE. (Intuitively, by
the previous property, this means that UPDATE indeed learns the current
structure of the real tree, except, possibly, for failing to report some of the
failures that may have occurred during its run.)

• Subroutine FIND is called after termination of UPDATE. It finds a minimum-
weight outgoing edge of a real tree. (If no edge can be found, then the algorithm
stops until a topological change occurs.) The key properties of FIND are similar
to those of UPDATE:

1. During the operation of FIND, no new edges are added to the real tree
(although the real tree can still shrink as a result of failures of tree edges).

2. The edge selected by FIND is a minimum-weight outgoing edge of the real
tree at some time during its execution. (More precisely, it is a minimum-
weight outgoing edge of a snapshot [CL85] of the real tree.)

3.3 The Strong Loop Freedom Invariant

The invariant defined below plays a major role in the analysis of the algorithm. We
present it here in order to give some insight into the structure of the algorithm. (Section
3.4. describes how the invariant is used.)

Definition 3.2 (Strong loop freedom invariant) We say that a tree replicas’ union
preserves strong-sense loop freedom if for every real tree, its tree-replicas’ union does
not contain a cycle.

We show that this is an invariant of the algorithm for every real tree. Intuitively,
when the invariant is kept, the tree replicas of nodes of a particular real tree may be
different, but they maintain some consistency. This is important, since in distributed
operation, one cannot avoid differences between the views of nodes. For example, a
node may have learned about a failure of a marked edge but not yet notified other
nodes. Thus, the tree replica of this node is different than those of the other nodes

12



www.manaraa.com

in the same real tree. In this example, the strong loop freedom invariant implies that
this node does not choose a replacement edge before the other nodes are notified of the
failure. This is because until the other nodes in the same real tree are notified of this
failure, the failed edge is still in the tree replicas’ union; so, choosing a replacement
edge would have introduced a cycle into that union.

The following action of the algorithm may look redundant. In fact, it is a crucial
action required to maintain the above invariant: UPDATE is performed first separately,
in two real trees that chose to merge. UPDATE is then performed again in the merged
tree. The sole change in the merging real trees (aside from possible edge failures)
between the two executions, is the marking of the edge that connects the real trees.
Nevertheless, the correctness of the algorithm is based on this seemingly redundant
repetition. Let us now explain the intuition behind this. (For a more formal analysis,
see Section 5.)

Given a particular real tree for which the invariant holds, it is relatively easy to see
that the operations do not violate the invariant as long as the real tree does not merge.
However, when two real trees (“left tree” and “right tree”) merge, the invariant can
be violated, even if it holds for each of these real trees separately. For example, some
node v may appear both in the union of tree replicas of “left tree”, as well as in the
union of tree replicas of “right” real tree. (Intuitively, there are nodes in the left real
tree that “believe” that v is in the left real tree, and nodes in the right real tree that
believe that v is on the right.)

Note that v actually belongs to, at most, one of these real trees. Thus, at least in
one of those replicas, some edge e leading to Node v appears erroneously, and should
be removed.

• Node v may have belonged to, say, real tree “left”;

• later, Node v could be disconnected when some Edge e failed, see Property (1)
of UPDATE.

• later, v merges into real tree “right” before “right” chose to merge with “left”.

Thus, before UPDATE is executed, v may appear both in tree replicas in the “right”
real tree, and in (some) tree replicas in the “left” real tree.

In the example above, the purpose of executing UPDATE in each of these real trees
before the merge is to remove the said erroneous edge—see Property (2) of UPDATE.
This preserves the invariant.

The execution of UPDATE again in the merged tree, is intended to let the nodes
learn about nodes that were added to their tree by the merge, so that FIND can be
performed correctly.
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3.4 Subroutine UPDATE

Subroutine UPDATE attempts to make the tree replicas of all nodes on a real tree
identical to the real tree. For each marked edge, it calls procedure LOCAL-UPDATE
which makes the tree replicas of the edge’s endpoints identical. (Note that other trees
of the forest replicas can remain different at the two endpoints.) The pseudo-code of
LOCAL-UPDATE appears in Figure 2.1 using functions defined in Figure 2.2. The
subscript of a variable designates the node in which the variable resides. Thus, Forestv

is a variable of Node v. Forestv(k) is the estimate in Node v of the forest replica of its
neighbor k. Forestv(v) is the forest replica of Node v.

The (distributed) subroutine UPDATE terminates after all the LOCAL-UPDATE
procedures have terminated. (The distributed implementation of UPDATE is explained
in Section 4.) Consider some sample marked edge, over which we execute procedure
LOCAL-UPDATE. Let us call the endpoints of the sample edge Node “left” and Node
“right”.

Whenever LOCAL-UPDATE is invoked or after processing a DIFF message
∀ k s.t. (v, k) is marked and Forestv(k) 6= undefined
(*Forestv(k): local mirror at v of (remote) forest of k*) do

send message DIFF(diff(k)) to k
(*foreseeing the way k will change its Forestk replica:*)
Forestv(k) := Forestv(k) ⊕ diff (k)

Whenever (*receiving message*) DIFF(Add, Del) from k
Forestv(v) := Forestv(v) ⊕ (Add, Del) (*updating forest replica*)
Forestv(k) := Forestv(k)− treek (Forestv(k)− {(v, k)}) ∪ treek (Forestv(v) −{(v, k)})
(*deducing forest replica update performed in k*)

Figure 2.1: Procedure LOCAL-UPDATE, code in Node v (see definitions in Figure 2.2)
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Definition: Let A, B, C be a set of edges.

A⊕ (B, C) is defined as (A− C) ∪B.

A proj B is defined as {(x, y) s.t. ((x, y) ∈ A and ∃ k s.t. (k, y) ∈ B)}

function diff(k: neighbor; returns ((Add, Del): pair of lists of edges)

(* Add: list of edges to be added to Forestv(k) since they are in Forest(v), and are on *)

(* v’s side of the tree. Del: edges that k should delete since they don’t appear in v’s *)

(* Forest although they are on v’s side of the tree (even according to k’s Forest) *)

Add := ((Forestv(v)−Forestv(k)) proj my-side(k)

Del := ((Forestv(k)−Forestv(v)) proj my-side(k)

return(Add, Del)

Functions My-side(k : neighbor; returns a tree)

(* returns v’s side of treev
v relative *)

(* to its edge from k *)

return (treev(Forestv(v)− { Edge (v, k)}))

Function treei (f : forest; returns a tree)

(* returns the tree in f that includes Node i *)

(* convention: Tree, or treev
v, is treev(Forestv(v))*)

Figure 2.2: Functions used by Procedure LOCAL-UPDATE in Node v

The main difficulty is the following: In case the tree replicas of the endpoints of
an edge disagree (regarding the status of an edge), it is not obvious how such an
“agreement” can be reached, or which one of the endpoints should be determined to
be “more correct”. (Intuitively, “left” is “more correct” than “right” regarding some
edge, if “left” “knows” the marking (or unmarking) as it existed in the real forest at
a later time than the one “known” to “right”.) However, assuming the above strong
loop freedom invariant, procedure LOCAL-UPDATE makes tree replicas identical in
an unambiguous and “correct” way.

Consider again a sample edge in a real tree. Using the invariant, for each edge
(u, v) in the tree-replicas’ union, there is a unique, undirected path in the union that
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starts with Edge (u, v) and ends with the sample edge. If this path enters the sample
edge through the left (right) endpoint, then we call Edge (u, v) a “left” (“right”) edge
(Drawing 6). Sometimes we call this edge a “left”-sided edge. Similarly, nodes u and
v are “left”-sided nodes.

Drawing 6: a “left” edge

u

left right
(left,u)

(w,right)

(u,v), (left,u) 

(u,left) 

The union:

{ (u,v),(left,u), (left,right),(right,w)}

w

(right,w)

(right,left)

(left,right)

(x,y)

(u,v) and (left,u) 

Are “left” edges

If the replicas of “left” and “right” differ about the status of Edge (u, v), and this
edge is a left edge, then endpoint “right” corrects its replica to agree with the replica
of “left” regarding Edge (u, v) (see Figure 2.2). It will be shown that the tree replica
of “left” is “more correct” regarding “left” edges. See (Drawing 7a). Note that if it
is a “left” edge according to the replica of one of the endpoints (either of “left” or of
“right”) then it cannot be a “right” edge in the replica of the other endpoint (because
of the strong loop freedom invariance).

In particular, “left” edges that do appear in the replica of “left” but not in the
replica of “right” are added to the latter. On the other hand, a left edge that does
not appear in the replica of the left endpoint is removed from the replica of the right
endpoint (Drawing 8). Similarly, the right endpoint replica is considered “more cor-
rect” regarding right edges. We use the name tree belief principle for this method of
deciding which is “more correct” about an edge according to which is closer on this
edge over the tree. We note here that Spinelli and Gallager were the ones to introduce
a belief principle for the same purpose [SG89]. However, the specific belief principle
in [SG89] leads to an exponential message complexity, while the belief principle used
here (together with the strong loop freedom invariant) leads to a linear complexity.

3.4.1 Neighbor Knowledge

Intuitively, UPDATE saves communication by sending a node only information this
node does not already “know”. To do that, for each real tree Edge (left, right), each
endpoint, e.g., left, keeps a mirror Forestleft(right), which is an approximation of the
forest replica of the other endpoint right.

Whenever a new edge (left, right) is marked, each of its endpoints, e.g. left,
simply transmits its whole forest replica over the newly marked edge to the other
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Drawing 7a: updating “right”: 

inserting “left” edges
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Drawing 7b: updating “right”: 

inserting “left” edges
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Drawing 7c: updating “right”: 

learning “right”’s views

u

left right
(left,u), (u,s)

w

(left,right)

s

(right,w)

(right,left)

(left,u),(u,t)

(right,w)

(right,left)

(left,u),(u,t)Message:

Drawing 7d: updating “right”: 

inserting and deleting “left” edges
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Drawing 8a: “left” edges not in 

the tree replica of “left”
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Drawing 8b: updating “right”

regarding “left” edges

u

left right
(left,u)
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(u,v), (left,u) 

(u,left) 

The union:

{ (u,v),(left,u), (left,right),(right,w)}
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(right,w)

(right,left)

(left,right)

(x,y)

(u,v) and (left,u) 

Are “left” edges

endpoint right. Thus, in later activations of LOCAL-UPDATE, endpoint left already
has a mirror Forestleft(right) of the replica of right. This mirror is accurate at least
regarding left edges, since any change in the replica of right regarding left edges must
result from an update message coming from left to right. Thus, it suffices that the
left endpoint transmits only corrections to this mirror, rather than transmit the entire
replica of the left node (Drawings 7c and 7d). The resulting reduction in the message
complexity is demonstrated in Example 3.1.

Example 3.1 Consider the case that “left” and “right” are in one real tree T , and
“left” has learned about a newly marked “left” edge that connected real tree T to another
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Drawing 9a: “left” learns

“right”’s forest replica
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Drawing 9c: “left” learns a new u-edge
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Drawing 9d: “left” does not tell “right”

about edges that “right” already knows
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Message:
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real tree T1 (Drawing 9). Assume further that “left” sees in its mirror of “right” that
the forest replica of “right” already contains the description of real tree T1. Now, “left”
must send “right” only the information about the newly marked left edge, rather than
the whole description of real tree T1 that now became a part of T .

3.5 Subroutine FIND

To determine which of its edges is outgoing, a node simply considers its tree replica.
If the node has an edge to a neighbor that is not in this tree replica, then the node
deduces that this is an outgoing edge. This still leaves us with the task of comparing
the outgoing edges known to different nodes of a real tree, in order to find the minimum.
We use a method that is taken from [GHS83] and is, by now, considered standard in
distributed network algorithms. Since this is a very well known method, we describe
it in Appendix A. Details regarding its (rather straightforward) adaptation to the
environment of topological changes are discussed in Section 4.
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4 Distributed Implementation

of the Tree Maintenance

We elaborate on the high-level overview given in Sections 2 and 3. We first describe
the implementation of the main program (Figure 1) assuming the existence of subrou-
tines (UPDATE and FIND) that tell each node which of its edges is outgoing. (The
subroutines, described in Subsections 4.1.2–4.1.4, are the distributed version of Sub-
sections 3.4 and 3.5.) For the sake of clarity, we first describe the actions the algorithm
takes from the point that no additional topological changes occur (Subsection 4.1).
(Note, though, that it is never known whether additional topological changes will oc-
cur.) Later (Subsection 4.2), we describe the additional steps taken when topological
changes occur during execution.

4.1 Operations When No Additional Topological Changes
Occur

Distributed tree representation: First, recall that each node maintains a subset
REAL-TREE-EDGES of its adjacent edges. The union (over all the nodes) of these
subsets is the real forest. Second, each node maintains a parent pointer that can point
either to nil or to one of its real tree edges. A node whose parent pointer is nil is called
a root.

4.1.1 Main Program

Recall that the high-level description of the main program appears in Figure 1. In
the distributed implementation, each real tree has a unique root which is one of its
nodes. The root coordinates the connection of this tree to others. The first task of a
root is to activate Subroutines UPDATE and FIND (described in Section 4.1.2). The
subroutines eventually terminate, and their terminations are detected at the root. At
that time, each node has a pointer to the next node on the route to the minimum
outgoing edge. The root then transfers the rootship to the next node on that route.
See Section 4.1.3 for more details. The rootship continues to migrate until it reaches
the node adjacent to the minimum outgoing edge.

When this node u becomes the root, it tries to reach an agreement with the other
endpoint of the minimum outgoing edge (u, v) to merge the two real trees (this is
described in Section 4.1.4). Consider the case that the other endpoint v is also the
root of its own real tree. If Edge (u, v) is also the minimum outgoing edge of v’s real
tree, then eventually u and v agree to merge their trees by marking (u, v). Recall that
this subsection deals with the case when no additional topological changes occur. Such
an agreement is not guaranteed in the case of topological changes (e.g. in the case of
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an edge recovery), unless we take additional steps, as described in Subsections 4.1.4,
4.2.5, and 4.2.6.

The higher Id endpoint (e.g. v) is chosen to be the unique root of the united tree.
The new root v now invokes Subroutine UPDATE separately in each of the two trees.
When these invocations terminate, these terminations are detected at the new root.
The new root v then sends its forest replica to the other endpoint u of the merging
edge. The other endpoint u marks the edge, initializes Forestu(v), and sends its own
forest replica to the root. The root then marks the edge too, and initializes Forestv(u).
Next, the root starts looking for a new merge candidate by invoking UPDATE again
and then FIND.

This process is repeated until a single tree spans the connected component of the
network.

On the other hand, when a real tree edge (u, v) fails, its endpoint u unmarks the
edge and removes the Forestu(v) associated with it (i.e., sets it to “uninitialized”).
The endpoint then notifies the root that a topology change has occurred (the ALERT
notification method is detailed in Section 4.2.4 below).

4.1.2 Subroutines: Search for the Minimum Outgoing Edge

Recall that a node discovers (Subsection 3.5) which of its adjacent edges is outgoing
by consulting its tree replica to see which of its neighbors is not in its own tree. We
now explain the distributed implementation of UPDATE, which maintains this replica.
We also must explain how the nodes in a real tree compare their adjacent minimum
outgoing edges to find the global minimum.

4.1.2.1 Let us start with Subroutine UPDATE. The root broadcasts an instruction
to the real tree nodes to perform procedure LOCAL-UPDATE, i.e., each node which
receives the broadcast forwards the received broadcast to its children on the tree. Next,
the node performs procedure LOCAL-UPDATE. See Subsection 3.4, and the pseudo-
code in Figures 2.1 and 2.2. The root detects that all the activations of LOCAL-
UPDATE terminate, using the termination detection algorithm of [DS80]. Since the
termination detection algorithm is quite known, we describe it in Appendix A.

4.1.2.2 As mentioned above, the tool used to find the minimum outgoing edge is
exactly the one used in [GHS83]. Additional details can be found in Appendices A.2
and B. The adaptation to additional topology changes is described in Subsection 4.2.
After FIND terminates at the root, the root calls Subroutine Root Migration (Section
4.1.3 below) to move the role of the root from itself to the endpoint of the minimum
outgoing edge.
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4.1.3 Subroutines: Root Migration

This distributed subroutine is initiated by a root of the real tree after the FIND it
invokes finds an edge that is outgoing from the tree. It transfers the role of the root to
the endpoint (in the real tree) of this outgoing edge. Note that the other endpoint of
that edge is in another real tree, which may be busy transferring its own rootship to
that other endpoint. (There are some other possible cases, e.g. that the rootship of the
other real tree may already be waiting in the other endpoint; yet another case is that the
other real tree is still busy merging with some other tree). Since, again, this migration
is a known technique, it is described in Appendix A. When this subroutine terminates,
the tree is directed towards the endpoint of the minimum outgoing edge, unless some
additional topology changes occurred. The adaptation to additional topology changes
is described in Subsection 4.2.

4.1.4 Agreement between Two Real Trees

The stage when two real trees agree to merge is different than the one used in
[GHS83]. Had we used the mechanism of [GHS83] in a network with topology changes,
the algorithm could have deadlocked. In the current algorithm, out of the two end-
points of the minimum outgoing Edge (u, v), only the one with the lower identity u
is responsible for offering a connection. Let u be the lower endpoint of the minimum
outgoing edge (u, v). As long as u is not a root, it does nothing. If u becomes a root as
a result of the actions in 4.1.3.2, then it sends a REQUEST message over the minimum
outgoing edge. When the REQUEST message is accepted at v, Node v may or may
not be the root of its own real tree. The reception of the REQUEST over edge (v, u)
is recorded at v even if it is not currently a root. When the tree of the higher endpoint
v has chosen this edge too and transferred the rootship to its endpoint v, v then waits
to receive such a REQUEST message from u, unless such a REQUEST has already
been received. Consider the time that all the following 3 conditions hold at v: (1) v
is a root, (2) a REQUEST message from u is recorded to have been received, and (3)
(u, v) is the current selection of the minimum outgoing edge of the tree rooted at v.
Root v then sends u an ACCEPT message agreeing to the merge offer. (It also erases
the record that a REQUEST has been received.) A case where the connection will not
take place even if a REQUEST message has been sent is described in Subsection 4.2
that deals with additional actions taken when topological changes occur.

Node v becomes the root of the merged tree. It first invokes a separate UPDATE
invocation in each of the two merging trees (see 4.1.1). When these UPDATE invoca-
tions terminate at v, Node v marks Edge (u, v) as a real tree edge, and instructs u to
do the same.

4.2 Additional Steps Taken When Topological Changes Occur

4.2.1 When the edge of a node to its parent fails, it sets its parent pointer to nil, and
thus becomes a root (by definition). Thus, there is always a root. Like the previous
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root, the new root starts by searching for an outgoing edge. If a search for a minimum
edge is ongoing (including Subroutine UPDATE), then the new root waits until it
detects the termination of this search. Then the root restarts the search. (For the
termination detection, see Section 4.2.2.)

4.2.2 In a Broadcast and Echo (used in FIND and UPDATE), if a real tree edge
between a parent and a child fails, then that edge leaves the tree. Thus, the child stops
being a child, and the parent will not wait for its Echo before sending an Echo to its
own parent (or before terminating, if this node is the root and thus has no parent).
The child that lost its parent will not send an Echo message.

No additional step for FIND is needed for edge recovery, nor for the case where a
non-real-tree edge fails. If an edge recovers during the execution of the Broadcast and
Echo, then it is still not a part of the real tree, and thus does not participate in the
search at all. As for a failed non- tree edge, such an edge is not used for the Broadcast
and Echo mechanism. Hence, the failure cannot prevent the termination of FIND. The
only bad case is the one when the failed edge is a minimum edge reported by a child
(or an edge on the route to that minimum). We do not change FIND to take care
of such a case. Thus, it may happen that the minimum edge reported by FIND has
meanwhile failed. Recovering from such a case is done not by FIND, but rather by the
ALERT messages mechanism, described in 4.2.4, 4.2.5.

4.2.3 If the minimum outgoing edge fails, then the root repeats the operation of finding
(another) minimum outgoing edge. This also happens if the root, while migrating to
the minimum outgoing edge, finds that the next edge on its route has failed.

4.2.4 If any node on the real tree notices any topology change, then it sends an
ALERT message to the root. This enables the root to “know” that the minimum edge
may have changed. The root needs to “know” that, since an agreement to merge is
guaranteed to be reached only if the chosen edge is the minimum outgoing edge. An
offer to merge with another real tree over a non-minimum edge may never be agreed
upon by the other endpoint. However, thanks to the ALERT, if no agreement was
reached, then a topological change is detected and the real tree then searches again for
the new minimum outgoing edge.

4.2.5 When the root receives the ALERT message, it must first check whether an
agreement with another (a higher root Id) real tree is being negotiated. This is the
case when (1) the root has sent a REQUEST message offering a merge to another tree,
and (2) it has not received an ACCEPT message from that other tree. If no such offer
was made, then the root restarts a search for the minimum outgoing edge. That is,
the root activates UPDATE again, then FIND, and, finally, migrates the root to the
endpoint of the minimum outgoing edge reported by FIND (if such an edge exists).

Note that the case that the root both offered a merge and received an agreement
is impossible, since in this case, it became the child of the other root and is no longer
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a root. If this happens after the agreement, but before this previous root marked the
merging edge, then this ALERT is ignored. (Anyhow, after the edge is marked the new
root will invoke UPDATE and find).

4.2.6 However, if the root u did send a REQUEST to another (a higher root Id v) real
tree and has not yet received an ACCEPT, then the root tries to check the status of
the offer. It asks (using a CANCEL message) the higher Id endpoint (of the minimum
outgoing edge) whether the latter has already sent an ACCEPT, thus agreeing to offer.
If the higher Id endpoint did agree, by sending an ACCEPT then the higher endpoint
need not answer the CANCEL question. In this case, the ACCEPT sent by the higher
endpoint will eventually arrive (unless the edge fails, canceling the merge). If such an
ACCEPT arrives at the lower Id endpoint, then the merge takes place, and the ALERT
message is discarded. (Anyhow the new root is going to invoke another UPDATE.)
Otherwise (when no ACCEPT message has been sent by the higher endpoint, e.g.
because it is not a root), the higher endpoint erases the record that a REQUEST
message has been received, and sends a reply (CANCELLED). The meaning of Message
CANCELLED is a promise to the lower Id root u that u’s last REQUEST is forgotten,
and that u will not act upon it. The reception of the CANCELLED message frees the
offering root u to restart the search for the current minimum outgoing edge.

We comment that this canceling mechanism is needed in order to prevent a deadlock.
Since a topology change occurred, Edge (u, v) may no longer be the minimum outgoing
one. Thus, v’s tree may never choose it for merging. Therefore, u cannot afford to keep
its own selection unchanged, since this would have caused a deadlock. On the other
hand, it is unsafe for u to change its selection without consulting v. Had u canceled
the merge offer over (u, v) without first consulting v, it may have happened that v
already agreed to the merge offer. This problem is not limited to our particular edge
agreement sub-protocol. It seems that any edge agreement protocol will have to deal
with the fact that an edge must be either marked by both sides, or by none. This
task is complicated by the topology changes that may require its abort. Details for
the method by which edge agreement is performed are not given explicitly in [CCK88].
Hence, the agreement method described in this subsection (4.2.6) may be useful for
other protocols, such as the one of [CCK88].

5 Correctness

We first prove several properties, assuming the strong loop freedom invariant. Later, we
use these properties to prove the invariant itself through an induction on the sequence
of events. From section 4.1, we can observe that the algorithm is constructed to work
in an orderly fashion. It works in “iterations” (for each root) where each iteration
conducts a single tree link merge.

In principle, an “iteration” is composed of an ordered sequence of subroutines,
UPDATE, FIND, root-migration, tree-merging and UPDATE again. Link failures may
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be accommodated during the “iteration” itself while the handling of new link recoveries
are delayed until the end of the “iteration”.

Our proof of correctness follows the natural flow of the iteration. We prove that if
the strong loop-freedom invariant holds at the beginning of an iteration it continues
to hold after the execution of each subroutine, until the end of the iteration, where
subtrees merge. Link changes may impact the operation of the algorithm and are taken
into account in the proof steps. Consequently, the sequence of lemmas tracks the flow
of an algorithmic iteration. In order to facilitate the description, we also group the
lemmas according to this logic.

Lemmas 5.1 and 5.2 show that the real forest is indeed a forest, consisting of rooted
trees. Lemma 5.5 shows that a real tree in this forest has periods of stability (in some
sense) even if changes continue to occur. This serves later to show that the root can
organize the (stable) tree to take action by way of a Broadcast and Echo over the tree.
This is the way UPDATE and FIND function.

Lemma 5.4 shows that Subroutine FIND indeed terminates, and that the termina-
tion is detected by the root. The next group of lemmas deals with the properties of
UPDATE that are more complex than those of FIND. The easiest property to show
(Lemma 5.6 and Corollary 5.7) is that the strong loop freedom invariant is not violated
by the actions of Subroutine UPDATE. Lemma 5.18 (appearing much later) general-
izes this claim to all the events, excluding edge marking events. To prove that edge
markings do not violate the invariant (Lemma 5.19) we need to first establish several
facts regarding Subroutine UPDATE.

Lemma 5.8 shows that the corrections regarding the state of an edge (x, y) flow
from x and y toward the other nodes and not vice versa. Intuitively, this makes this
information “more accurate”, as is shown in later lemmas. This is also used to show
the termination of UPDATE as follows. Lemma 5.9 shows that this “flow” is not
deadlocked, since a node “knows” which information needs correction at its neighbor.
The progress shown by that lemma is also used in Lemma 5.10 to prove that the number
of messages sent by UPDATE is bounded. This facilitates the proof that UPDATE
terminates, and moreover, that this termination is detected by the root. See Lemma
5.11.

Lemmas 5.12, 5.13, and 5.14 show that when UPDATE terminates, the tree replicas
at all the nodes of the real tree are equal to the real tree, except, possibly, for missing
“knowledge” of recent edge failures.

Lemmas 5.15, 5.16, and 5.17 show that the above correct collection of information
leads to the merging of trees. Merging neither creates cycles in the forest nor breaks the
invariant. Lemma 5.19 then sums up that strong loop freedom in every tree replicas’
union is indeed an invariant of the algorithm. This leads to Theorem 5.20 that states
that eventually a spanning tree spans the connected component of the network.
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5.1 Additional Invariants

The following two lemmas establish that the “iteration” description is well defined.
That is, at all times, there exist a forest, a unique tree for each node, and a root of
each tree. This is important since the root directs the advances of the “iteration”.

Lemma 5.1 As long as the strong loop freedom invariant holds, the real forest is indeed
a forest.

Proof. By definition, each real tree edge appears in the tree replica of its endpoints,
and thus, in the tree-replicas’ union. Thus, as long as there is no cycle in this union
(since the strong loop freedom invariant holds), there is no cycle in any real tree.

Definition 5.1 We say that Node u and Node v agree on the direction of their parent
pointer if the following two conditions hold: (1) if the parent pointer of Node u points
at its neighbor v, then the parent pointer of Node v does not point at u, and (2) if the
parent pointer of Node v does not point at u and Edge (u, v) is marked as a real tree
edge at u, then the parent pointer of u does point at v.

Definition 5.2 A Root Transfer State for a real tree: a global state where (1) this real
tree has no root, (2) there is exactly one edge (u, v) in the real tree for which the parent
pointer of Node u points at v, the parent pointer of Node v points at u, and there is a
message BE-ROOT from u to v, and (3) the endpoints of every other edge in the real
tree agree on the direction of their parent pointers.

Lemma 5.2 As long as the strong loop freedom invariance holds, the only global states
in which a real tree does not have exactly one root are root transfer states, which
eventually end.

Proof. We prove by induction on the order of events that

1. Both endpoints of every edge of a real tree agree on the direction of the parent
pointer, except during a root transfer state.

2. During a root transfer state, the endpoints of every real tree edge agree on the
direction of the parent pointer, except for the edge carrying the message BE-
ROOT.

3. There is never more than one root in a real tree.
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4. There is no root in the real tree if and only if the real tree is not in a root transfer
state.

5. A message BE-ROOT is carried only by one edge in a real tree, and if and only
if the real tree is in a root transfer state.

The basis of the induction is the case that every node is a real tree by itself, and
this claim holds trivially. Consider any event.

1. Consider all the cases that a node may assign a value to its parent pointer. The
first case is when the edge to the parent fails and the node unmarks the edge,
and sets the parent pointer to nil. Clearly, the induction claim continues to hold.
(Recall, that a failed edge is not considered a real tree edge, even if one of its
endpoint has not learned yet about the failure). The second case is when trees
merge. Only the lower endpoint assigns a value to its parent pointer, and that
pointer is made to point at the higher endpoint. Moreover, the assignment of
the parent pointer at the lower endpoint is made at the same time the lower
endpoint marks the edge (Note, that the lower endpoints marks the edges before
the higher endpoint does). See Section 4.1.4. Hence, when the edge is marked, the
endpoints agree on the direction of the parent pointers. Finally, the value of the
parent pointer is changed in a root transfer (Section 4.1.3.2). By the induction
hypothesis, before the root transfer action is taken, all the endpoints of the edges
in the real tree agreed about the parent pointer direction, and there was exactly
one root. Hence, by 4.1.3.2 this enters the real tree into a root transfer state,
and the claim holds.

2. This part follows directly from the definition. (It also follows directly from Part 1,
when recalling the only place in the algorithm that sends a BE-ROOT message.)

3. By Part 3 of the induction hypothesis, before the event there was at most one
root. If the event was a failure of a tree edge, then consider first the case when
the real tree was not in a root transfer state. By Part 1, there is exactly one
node (in one of the resulting new real trees) that lost its parent. Since the other
nodes did not loose their parents, they do not become roots. Now consider the
case that the edge failed during a root transfer state. In each of the resulting
new trees there is at most one node that lost its parent, by Part 2. Hence, there
is at most one root in any of the resulting trees, by Part 4. The only other event
that turns a non-root node into a root is the reception of a BE-ROOT message.
This part now follows from Parts 5 and 4 of the induction claim.

4. This follows from Part 1.

5. Consider the time that a message BE-ROOT is sent. By Section 4.1.3.2 and
by the induction hypothesis, the real tree enters a root transfer state. In this
state there is no root. Only a root can send an additional BE-ROOT message.
However, for a new root to be created, either the first BE-ROOT message must
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have arrived first, or this edge fails (and the first BE-ROOT message is lost),
or the new root is a node that lost its parent. In the first two cases, the first
BE-ROOT message is no longer in transit when the second is sent. In the last
case, by the induction hypothesis (Part 2) this new root is no longer in the same
real tree where the first BE-ROOT message is.

5.2 Actions of FIND

Lemma 5.3 From the time a root invokes Subroutine FIND in a real tree, and until
the time the root detects the subroutine’s termination, the only possible changes to the
tree are the loss of edges (and nodes).

Proof. Only a root marks edges as real tree edges, and the root does no markings
from the time it activates an FIND until FIND terminates at the root (if it does). In
Figure 1, the last line is the only case of edge marking.

Lemma 5.4 As long as the strong loop freedom invariant holds, Subroutine FIND
always terminates, and the termination is detected by the real tree root.

Proof. FIND sends messages only over real tree edges. By Lemma 5.2, these edges
form a forest. We prove by induction (starting from the leaves and ending at the root)
for every node u in this tree (at the time FIND is invoked) that either u leaves the
tree, or the following holds:

• If u is not the root, then u receives the Echoes of the FIND from all its children,
and then sends its Echo to its parent.

• If u is the root, then u receives the Echoes of the FIND from all its children. At
that time, the root decides that this FIND terminates in its real tree.

• At the time u receives the Echoes of all its children, all its offspring in the real
tree already sent their Echo messages, and no message of FIND is in transit in
this subtree.

The basis of the induction (a leaf) is trivial. The induction step is the same as the proof
for a static tree (see e.g. [Seg83]), because u cannot acquire new children during its
execution of FIND, by Lemma 5.3. Specifically, Node u sends an Echo when receiving
the Echoes of all its children. For those Echoes, the induction hypothesis holds, and
thus, it holds for u too.
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Note that topology changes do not change this proof of the induction step: A
recovery of an edge does not change the proof since this edge does not join the tree,
by Lemma 5.5. This is also the case with the failure of an edge that does not belong
to the real tree. Finally, if an edge connecting a parent u and its child v fails, then it
stops being a real tree edge. Thus, u will not wait for v’s Echo before u sends its own
Echo, so the above proof of the inductive step still holds. For the sake of completeness,
let us consider the case of a node v that lost its parent before it Echoed FIND. In
this case, v itself becomes a root, and the induction proof holds for v’s new real tree.
That is, eventually, v receives the Echoes of all its children, detects the termination of
FIND in its own real tree, and, indeed, at that time, FIND in v’s current real tree has
terminated.

5.3 Actions of UPDATE

Lemma 5.5 From the time a root invokes Subroutine UPDATE in a real tree, and
until the time the root detects the subroutine’s termination, the only possible changes
to the tree are the loss of edges (and nodes).

Proof. The proof is the same as the proof of Lemma 5.3

The following lemma is crucial in proving the correctness of the algorithm. It
demonstrates that adding edges to replicas during the execution of UPDATE cannot
create cycles in the replica union and therefore, cannot violate the strong loop freedom
invariant.

Lemma 5.6 Consider an event t that is a part of an execution of UPDATE in a real
tree T . Every edge that belongs to the tree-replicas’ union of T just after t, also belongs
to the tree-replicas’ union of T just before t.

Proof. We need to consider only addition of edges. An edge e is added by Subroutine
UPDATE to the tree replica of a node v only by inserting an edge from the “Add”
list of a DIFF message v receives from a neighbor u in the same real tree (see Figure
2.1). Note that this edge was already in the union by virtue of being in the “Add” list.
Similarly, the edge is included by u in an “Add” list it sends only if it is already in u’s
tree replica. See Figures 1 and 2.1. Thus, this edge is in the tree-replicas’ union of v’s
tree. Hence, the union of the tree replicas can change only by the addition of nodes
to the real tree (implying the addition of replicas to the union, or of a marking of an
edge by the root). This does not happen during the execution of UPDATE by Lemma
5.5.

Corollary 5.7 The strong loop freedom invariant is not violated by actions of Subrou-
tine UPDATE.
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Note that an edge recovery does not change the replica of any node (until some
later time when this edge may get marked and become a real tree edge as a result of
additional actions of UPDATE, FIND, etc.)

Definition 5.3 A u-sided edge according to a tree replica treew
w (of Node w) relative

to a pair of neighbors u and v: this is any edge (x, y) such that the route from x to v
over treew

w passes via u.

Lemma 5.8 As long as the strong loop freedom invariant holds, the following holds:

• Whenever a node u instructs its neighbor v to add an edge to v’s tree replica, this
indeed is a u-sided edge according to treeu

u, and is not a v-sided edge according to
treev

v.

• Whenever a node u instructs its neighbor v to delete an edge from v’s tree replica,
this is a u-sided edge according to treev

v and is not a v-sided edge according to
treeu

u.

Proof. Follows directly from the invariant, and from the computation of the content
of DIFF in Figures 2.1, 2.2.

Lemma 5.9 For any edge (u, v) of the real tree, as long as the strong loop freedom
invariant holds, consider any non- faulty real tree edge (i, j). If (i, j) is u-sided then
the following holds:

• Edge (i, j) appears in treev
u(Forestu(v)) but not in treev

v, if and only if there is a
message on the way from u to v instructing u to add this edge to treev

v.

• After Forestu(v) is initialized, Edge (i, j) does not appear in treev
u(Forestu(v))

but appears in treev
v, if and only if there is a message on the way from u to v

instructing u to remove this edge from treev
v.

Proof. We prove by induction on the events during the run of the algorithm. The
induction basis is the case when every node is alone in its own real tree and there are
no edges in the real forest. The proof in this case is trivial.

First, consider all the possible changes in treev
u(Forestu(v)). Recall that when an

edge is being marked as a real edge, its endpoints exchange their entire forest replicas.
Moreover, there is no old DIFF message on the edge. This is because DIFF messages
are sent over tree edges only, and this edge has not been a tree edge until the marking.
Indeed, it may have been a tree edge in the past. However, the only way to get
unmarked for an edge is to fail. At that time, all the messages over it are lost. So
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no DIFF message exists over it when the edge is marked again. Thus, at the time u
becomes a real tree neighbor of v, the claim holds.

Later, u sends a DIFF to v if and only if Node u also updates treev
u(Forestu(v)), see

the computation of the DIFF messages in Figures 2.1, 2.2. Thus, the claim continues
to hold after such an update.

The second relevant case is when v changes treev
v. If this is the result of a DIFF

message from u, then the proof follows from the induction hypothesis for the previous
case. If this change in treev

v results from a message DIFF from another neighbor of v,
then the change involves a non-u-sided edge, by Lemma 5.8. This is also the case if v
marks, or unmarks, some other Edge (v, w) as a real tree edge. Thus, the claim is not
violated.

Note that, by the code of LOCAL-UPDATE (see Figure 2.1), Node v always follows
the update instruction.

Lemma 5.10 As long as the strong loop freedom invariant holds, during the execution
of UPDATE in a real tree, an Edge (u, v) may be added at most once to the tree replica
of each node.

Proof. Assume the contrary. Let s be the first node in which some edge (u, v) is added
twice to its tree replica during the same run of UPDATE. Let t1 be the first time when
this happened, and let l be the node that instructed s (by a DIFF message) to perform
this addition. Let t3 > t1 be the second time when node s adds (u, v) to its tree replica,
and let p be the node that instructed s to perform the addition this time. Thus, there
exists some time t2, such that t3 > t2 > t1, when s deletes Edge (u, v) from its tree
replica.

First, we prove that p 6= l. Assume the contrary, and note that p = l had (u, v)
in p’s tree replica from the time it sent M1, the DIFF message received at s at t1,
to the time p sent M3, the DIFF message received at s at time t3. Otherwise, this
would have contradicted the definition of s as the first node that performed two such
additions during that invocation of UPDATE. For that, recall that in order to instruct
s to add (u, v), Node p must have (u, v) in treep

p and not have it in trees
p(ForestP (s) ;

see Figures 2.1 and 2.2.

Moreover, when p sent M1, it also inserted Edge (u, v) into trees
p(Forestp(s)). (See

Figure 2.1, the last line of each of the Whenever statements.) Also, p does not delete
(u, v) from trees

p(Forestp(s)), by Lemma 5.9 and since we proved that p did not remove
(u, v) from p’s tree replica.

Hence, Edge (u, v) is in trees
p from t1 to t3. By the computation of the returned

value Add (see figure 3) (and by Lemma 5.9), Edge (u, v) will not be included in an
Add list p may generate in the time interval [t1, t2]. However, by Figure 2.1 (the first
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”Whenever” clause), such an Add list is the only case that p sends instructions to s
to add edges to s’s replica. Hence, p could not have sent M3. This contradicts the
assumption that p = l.

Now, consider the remaining case that p 6= l. By the Tree Belief Principle (the
computation of Add in Figures 2.1 and 2.2), when p instructed s to add Edge (u, v),
p was, according to its tree replica, closer (on the tree) than s is to u. This also holds
for l at time t3. By Lemma 5.6, this means that there exist two routes over the tree-
replicas’ union from u to s at time t1 (one via p, and the other via l). This contradicts
the assumption that the strong loop freedom invariant holds.

Lemma 5.11 As long as the strong loop freedom invariant holds, Subroutine UPDATE
always terminates, and the termination is detected by the real tree root.

Proof. A node that receives the UPDATE broadcast starts the LOCAL-UPDATE
process, in which (1) it instructs neighbors to add edges to their tree replicas or to
remove edges from them, and (2) it gets such instructions from its neighbors. Assum-
ing that this process ends, the proof that UPDATE terminates and its termination
detection succeeds is the same as the proof of Lemma 5.4. It is left to show that the
LOCAL-UPDATEs terminate, but this follows from Lemma 5.10.

Recall that a tree replicas’ union of a real tree may include edges (say (x, y)) that
are not in the real tree. This happens, for example, when (1) some edge (even (x, y)
itself) connecting x to the real tree failed, and (2) the failure has not yet been reported
to some node in the real tree. Note that the node that is closest to (x, y) on the tree
replicas’ union no longer has (x, y) in its tree replica, but it may take some more time
until the edge disappears from the replicas’ union. This gives rise to the following
definition.

Definition 5.4 Consider a real tree and its tree replicas’ union. Consider a maximal
connected component of this union, such that no edge of the component is in the real
tree. We say that this component is trimmed from the real tree at Node u and Edge
(u, w) if Edge (u, w) is in this component, but u is in the real tree. When we refer to
the component, we call it “the subtree trimmed at edge (u, v)”.

The following lemma states that UPDATE makes the tree replicas identical (in
nodes in the same real tree) with the exception of trimming. Intuitively, trimming is
an exception since it could have occurred after UPDATE terminated at a node.

Lemma 5.12 As long as the strong loop freedom invariant holds, whenever UPDATE
terminates in a real tree, for every two neighbors u, v in the real tree the following holds:

If an edge (x, y) appears in treev
v, and does not appear in treeu

u then Edge (x, y)
belongs to a subtree trimmed at (u, w) for some w 6= v. Moreover, the trimming
happened after UPDATE terminated at u.
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Proof. It is easy to see that the termination of UPDATE is not detected at the root of
the real tree before every node in the real tree receives the UPDATE’s broadcast and
starts its LOCAL-UPDATE. By Lemma 5.11, UPDATE does not terminate before
all the LOCAL-UPDATEs in the real tree terminate. Thus, LOCAL-UPDATE is
performed at every node in the real tree before UPDATE terminates. It is left to prove
that the LOCAL-UPDATEs reach a state for which the lemma holds.

By the strong loop freedom invariant, every edge with at least one endpoint in the
subgraph treev

v

⋃
treeu

u is either a u-sided edge or a v-sided edge, but not both. First,
consider a u-sided Edge (x, y) that is in treeu

u and not in treev
v. By the invariant, this

edge is not a v-sided one, and v does not instruct u to remove it (see the calculation
of the list Del in Figure 2.2). Moreover, it is not a k-sided edge relative to v and any
of its neighbors k 6= u. Thus, v does not get any instructions from any such neighbor
k regarding Edge (x, y) (see, again, the calculation of the list Del in Figure 2.2). By
Lemma 5.9, as long as UPDATE has not terminated in u, treev

u(Forestu(v)) includes
(x, y) if and only if it is also added to treev

v. This shows that UPDATE causes treeu
u

and treev
v to agree on every u-sided edge in treeu

u.

The proof for a u-sided edge not in treeu
u is similar, as long as UPDATE has not

terminated yet at u. The only change to a replica that can take place after UPDATE
has terminated in Node u, is for an edge (u, w) of u itself that was in the real tree and
now fails. (Node u does not use UPDATE yet; instead it sends an ALERT message
to the root asking it to start UPDATE; see Section 4.2.4). In this case, u removes
the edge from treeu

u, but does not update v. Note that this may lead to a discrepancy
between u and v only regarding edges in the subtree trimmed at Node u and Edge
(u, w), so the lemma continues to hold.

Lemma 5.13 As long as the strong loop freedom invariant holds, the tree replica at
each node u when UPDATE terminates, is a subset of the real tree to which u belonged
when this invocation of UPDATE started.

Proof. Assume, by way of contradiction, that when UPDATE terminates, there exists
an edge (x, y) in u’s tree replica such that (x, y) did not belong to the real tree of u
when UPDATE was invoked. Let M = {u = u0, u1, u2, ...um = x, um+1 = y} be the
route (in u’s tree replica at the termination of UPDATE) that starts in u, passes via
x, and ends in y. Let (x′, y′) be the first edge on M that does not belong to the real
tree at the time UPDATE was invoked. (Note that x′ is its endpoint in u’s real tree.)
Clearly, the assumption that (x, y) exists implies the existence of such an Edge (x′, y′).
We show that such an edge (x′, y′) does not exist.

Let x′′ = uq be the closest node to x′ on M , that is still in u′s real tree when
UPDATE terminates (possibly, x′ = x′′). We prove by induction on q− j, the distance
of a node from x′′ on M , that when Node uq−j terminates its part in UPDATE, the
following holds:
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(*) Edge (x′, y′) does not appear in tree
uq−j
uq−j .

Note that by Lemma 5.12 the following holds:

(**) all the edges on M between x′′ = uq and uq−j do appear in tree
uq−j
uq−j .

The induction hypothesis holds for j = 0 by the definitions of x′′ and (x′, y′) and
by the assumption that the strong loop freedom invariant holds. Assume that the
hypothesis holds for j − 1. Hence, there is a time during the execution of UPDATE
from which (and up to the termination of UPDATE, inclusive) (*) holds for x′′ =
uq, uq−1, ...uq−j−1. Consider that time interval.

By Lemma 5.9, if any edge on M between x = uq and uq−(j−1) does not appear
in tree

uq−j
uq−j , it (eventually) does not appear in treeq−(j−1)(Forestq−(j−1)(uq−j). By the

definition of M , the assumption that the strong loop freedom invariant hold, and (**),
such an edge is a uq−(j−1) sided edge relative to uq−j. Thus, uq−(j−1) instructs uq−j to
add it (see the computation of the list Add in figure 3). Node uq−j does indeed add it
(see figure 2). Similarly, Node uq−(j−1) also instructs uq−j to remove (x′′, y′′) if it appears
in the tree replica of uq−j (see the computation of the list Del in Figure 2.2). This is
because this edge is uj−(1−1)- sided (by (**) and by the strong loop freedom invariant).
This edge is indeed removed (see Figure 2.1). By similar arguments, Edge (x′′, y′′) is
not added again to the tree replica of uq−j in the same invocation of UPDATE. Thus,
neither Edge (x′, y′) nor Edge (x′′, y′′) are in treeu

u when UPDATE terminates.

Note that Edge (x′, y′) in the proof of the above lemma may still appear in the
forest replica of u when UPDATE terminates, though not in u’s tree replica. Edge
(x′′, y′′) was removed from the forest replica too.

Lemma 5.14 As long as the strong loop freedom invariant holds, the tree replica at
each node u when UPDATE terminates is a superset of the real tree to which u belonged
at that time.

Proof. Follows from Lemma 5.12.

In the following lemma we show that trees merge, if there is a “sufficiently long”
interval of time during which no topology changes occur. The main point is to show
that there is no deadlock. The algorithm prevents a case in which one tree insists
on merging over one edge, while the other insists on merging over the other. Such
a problem does not arise in static networks, see [GHS83]. However, this could have
happened in a dynamic network, had we not taken steps against it.

5.4 Actions of Tree Merging

Lemma 5.15 Assume the topology changes stop, and the strong loop freedom invariant
holds. Consider the minimum edge (u, v) that connects two real trees. Eventually, one
of these real trees merges with another real tree.
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Proof. We first outline the proof: (1) Edge (u, v) is not chosen by its real tree only if
this real tree chose another outgoing Edge (x, y), and (2) in this case, either the real
tree merges over Edge (x, y), and the lemma holds, or the real tree performs another
UPDATE and FIND, in which it selects (u, v). This happens in both the real tree of u
and the real tree of v. Thus, these two trees merge together, unless one of them merges
with yet another tree.

Detailed proof: By the code (restarting whenever topology changes occur, see Figure
1, the second Whenever statement, and Section 4.2.4 in the distributed implementation)
and by Lemmas 5.4 and 5.11, as well as Lemmas 5.13 and 5.14, the real tree to which
u belongs does find an outgoing edge if such exists. This can be either Edge (u, v) or
some other edge (x, y) whose weight must be higher (since (u, v) is minimal). Moreover,
by Lemma 5.4 and the fact that FIND compares values on a tree, the later case can
happen only if (u, v) recovered after u already sent the Echo of FIND to its parent.
In this case, the recovery of (u, v) causes an ALERT message to be sent to the root,
prompting it to start a new round of UPDATE and FIND (See 4.2.4). Thus, either the
real tree abandons the selection of (x, y) and selects (u, v) as its minimum outgoing
edge, or it already is involved in a merger.

That is, the root will insist on the selection of (x, y) only if it is x and it is in the
following state: It already sent a REQUEST message to y, and has not received an
ACCEPT message. See 4.2.6, 4.2.3, 4.2.1. The other cases are easier, but let us mention
them first for the sake of completeness: (1) Had x received an ACCEPT message, it is
either about to complete a merge, and the lemma holds, or is no longer a root, which
contradicts the claim that the root received the ALERT. (2) Alternatively, had the
root received a REQUEST message and already sent an ACCEPT message, it would
have completed the merger by now, and then found Edge (u, v) in the next iteration
of the algorithm. Recall that a new root runs UPDATE again. See Figure 2.1.

We now show that no deadlock occurs also in the remaining case that a root x has
already sent a REQUEST and is waiting for an ACCEPT when it receives an ALERT.
Root x sends a CANCEL message to y. See 4.2.6. Recall that we assume here that the
topology changes stopped; thus this message arrives. (No deadlock occurs here even
if Edge (x, y) did fail, since then x would have performed another round of UPDATE
and FIND; see 4.2.4, 4.2.3, 4.2.1). If this message arrives when y has not yet sent an
ACCEPT to x, then y sends a CANCELLED message (see 4.2.6), and root x is free
to perform another round of UPDATE and FIND (see 4.2.4, 4.2.3), in which it will
find Edge (u, v) or the other edge that is the minimum outgoing at that time. (If no
such edge exists, then the lemma holds trivially.) If, on the other hand, the CANCEL
message of x arrives at y when y already sent an ACCEPT message to x, then the two
trees merge, and the lemma holds. See 4.2.6.

Observation 5.16 Assume that the strong loop freedom invariant holds up to the point
that two real trees merge. Then, no cycle is created in the real forest by the merge.

Proof. By Lemmas 5.1 and 5.2, the real forest is indeed a forest of rooted trees until
the merge. Moreover, real trees do not add any edges except by merging.
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For two trees to merge, the root of one of them sends a REQUEST message, and
the root of the other agrees and sends an ACCEPT message. See 4.1.4. Each of these
trees has only one root (Lemma 5.2). The sender of the REQUEST message sends
neither an ACCEPT nor any other message before either one of the following 2 events
occur:

1. The REQUEST message is answered: in this case the sender of this REQUEST
stops being a root, and this real tree will not merge with any other real tree.
Thus, a cycle is not created. See Section 4.1.4.

2. The sender of the REQUEST sends a CANCEL message and gets a reply that
approves the cancellation of the merger (CANCELLED message). In the second
case, the merger is canceled, and cannot lead to a cycle. See 4.2.6.

We are now ready to establish the fact that strong loop freedom is an invariant of
the algorithm. The proof is based heavily on the remarkable action of the algorithm,
namely, the fact that it executes UPDATE twice: before a merge (without FIND) and
after a merge (with FIND), for two different reasons. The proof of the following lemma
explains the reason for executing UPDATE before a merge.

Lemma 5.17 The merging of trees does not violate the strong loop freedom invariant.

Proof. By Lemma 5.1, the set of edges of two merging trees is disjointed at the time
they choose an edge to merge. By Observation 5.16, no cycle is created in the merged
real tree. Hence, these two real trees do not share any node (before adding the merging
edge). Recall (Figure 1) that after choosing the merging edge, but before marking it,
UPDATE is performed in each of the two merging trees separately. By Lemma 5.13,
after these UPDATEs, the tree replica of any node v in either one of the two merging
real trees is a subset of v’s real tree. It is left to show that this replica does not contain
nodes from the other real tree. However, this is clear from the fact that this tree replica
is a subset of a set (the real tree) that does not contain nodes from the other real tree.

5.5 Theorem

Lemma 5.18 For each event during the execution of the algorithm, except for a “mark”
event (see the last code line, Figure 1), the following holds: If the strong loop freedom
invariant holds before the event, then it holds after the event as well.

Proof. The only events of the algorithm that change tree replicas at all are as follows:
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• An edge failure may remove edges from tree replicas (if this is a real edge). This,
however, cannot create cycles.

• A “mark” event adds a real tree edge to the tree replicas of both its endpoints.
Note (from the text of the lemma) that this lemma does not make any claim
about this event.

• The reception of a DIFF in UPDATE may insert (or delete) edges to the tree
replica of the recipient. This cannot create cycles by Corollary 5.7.

Lemma 5.19 Strong loop freedom is an invariant for the algorithm.

Proof. Follows from Lemmas 5.18 and 5.17.

Theorem 5.20 If the topology changes stop, then, eventually, every connected compo-
nent is spanned by one real tree.

Proof. Follows from lemmas 5.15 and 5.19.

6 Complexity

In this section, we analyze the message complexity of the algorithm. Recall that the
number of bits per message is logarithmic in |ID|, which is the size of the name space
of the nodes. Typically, log |ID| = O(log V ). This message complexity is one of the
main contributions of this paper. We do not analyze here the time complexity which
does not compete with those of [AAG87] or [KP99] (though it is still polynomial).

Intuitively, we show that every node is notified about every topological change a
bounded number of times (actually once, but this is somewhat harder to show). We
rely on the structure of the forest, analyzed in the previous section. Recall that each
real tree is rather stable (except for, possibly, loosing edges) for the period it performs
UPDATE. Thus, the notification of the changes flow over trees, and, thus, cannot cycle.
We also make sure this flow is completed before the merge. This prevents the possibility
that an old update “in transit” will arrive at a Node u from the side of its old tree,
while the same information will arrive from the side of the other tree with which u’s
tree has now merged. Hence, and because of the strong loop freedom invariant, when
two trees merge, the information about each edge flows only in the correct direction,
from the edge to other nodes. This ensures not only the correction of the information,
but also that the information flow does not cycle. We also keep the invariant that
a node “knows” what its tree neighbor “thinks”. Hence, a node is not told what it
already “knows”. This ensures that the amortized cost of notification about a topology
update is O(V ). Finally, we show how to attribute the work performed for each merge

36



www.manaraa.com

to a recent topological change. Since we manage to keep the overhead per change to
O(V ), the cost of merging is also O(V ) per topological change.

Lemmas 5.8 and 5.9 show the cases that DIFF messages are sent. Lemma 6.1 shows
that the tree replicas indeed stabilize before a merge, in the sense that each node already
“heard” of every edge insertion to its real tree. Recall that edge failures can occur at
any time. Thus a node may not be aware of deletions that occurred recently. Lemmas
6.2, 6.3, and 6.5 show that such deletions of which the node is unaware are indeed
recent. The above lemmas are used to show in Lemma 6.6 that every node updates its
tree replica a constant number of times per item. To conclude the analysis it is shown
(in Theorem 6.7) that every merge can be attributed to a recent topological change.
The proof of the theorem includes also a count of the rest of the messages sent.

Definition 6.1 We say that a merging edge is agreed upon between two trees when
(1) one of them has sent a REQUEST message over it, (2) the other has responded
with an ACCEPT message, and (3) the edge has not failed in the interval between the
two events.

Definition 6.2 Let a pre-merge update be a run of UPDATE invoked when a merging
edge was already agreed upon between two trees, and UPDATE is executed in each
of them separately (see Figure 1, the third Whenever statement, first line). Let a
post-merge update be the other kind of UPDATE (see Figure 1, the second Whenever
statement).

If a topology change occurs during UPDATE, causing UPDATE to be executed
again, we refer to the combined execution as one execution.

When talking of a post-merge update, we would like to be able to talk separately
about the nodes that were in each of the merging real trees before this merge.

Definition 6.3 Let u be a node that participates in an invocation of UPDATE. Let Tu

be the set of nodes that participated with u both in its previous UPDATE invocation
and the current one. Let T̄u be the set of nodes that participate with u in its current
UPDATE invocation, but not in the previous one (note that this is possible only in a
post-merge update).

Lemma 6.1

• No node adds an edge to its tree replica during a pre-merge UPDATE.

• If some node x is added to a tree replica of a node u during a post-merge UP-
DATE, then x does not belong to Tu.
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Proof. Every node that belongs to the real tree of some node u during any pre-merge
update, already belonged to u’s real tree in the previous UPDATE. The lemma now
follows from Lemma 5.12. Similarly, every node that belongs to Tu during a post-merge
UPDATE, already belonged to u’s real tree in its previous UPDATE, and the lemma
follows from Lemma 5.14.

The following lemma is used to show that changes in the data structures can be
attributed to topological changes that occurred recently.

Lemma 6.2 If Edge (u, v) is deleted from the forest replica of a node x during an
UPDATE, and it was in the tree replica of x when this UPDATE was invoked, then
Edge (u, v) failed after the beginning of the previous invocation of UPDATE in the real
tree to which x belongs.

Proof. Either this is a post-merge UPDATE and Edge (u, v) is the merging edge, or
Edge (u, v) must have been in x’s tree replica when the previous invocation of UPDATE
terminated at x. This is because there are only two ways in the algorithm for an edge
to join x’s tree replica – either (1) if x = u, by having x mark Edge (x, v), or (2) by
an UPDATE. Obviously, the lemma holds in the first case. Let us consider the second
case.

By Lemma 5.13, Edge (u, v) was in x’s real tree when that previous UPDATE was
invoked. We show that it indeed failed later. Let w ∈ Tx be the first node in Tx to
either delete Edge (u, v) from w’s tree replica, or send a DIFF message instructing
another node to delete that edge. By Lemma 5.12, either (a) Node w had Edge (u, v)
in its tree replica at the beginning of the current UPDATE, or (b) (u, v) belongs to a
subtree that was trimmed at w before the beginning of the current UPDATE.

Consider case (a). By the strong loop freedom invariant, Node w cannot receive
a DIFF message from a node not in Tx, instructing w to delete (u, v) from w’s tree
replica. In addition, w did not receive a DIFF message from another node in Tw

instructing it to delete (u, v) by the choice of w. The only other case in the algorithm
when w may delete the edge is that w = u, and w unmarked Edge (u, v) = (w, v)
after the termination at w of the previous invocation of UPDATE. Note that an edge
is unmarked only when it fails (Figure 1).

Now consider case (b). Similarly to case (a), Node w did not delete Edge (u, v) as
a result of a DIFF message. In addition, note that w may send a DIFF message that
includes an edge in a subtree trimmed at w only if w = u (see figures 2 and 3). Hence,
this edge was unmarked, which implies that it failed.

We showed that in both cases the edge was in the real tree when the previous
UPDATE was invoked, and failed after that.

Lemma 6.2 showed that a deleted edge failed recently, but only under a certain
condition that is eased in the next lemma.
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Lemma 6.3 If Edge (u, v) is deleted from the tree replica of a Node x during an
UPDATE, and Node u was in the tree replica of x just before this UPDATE was invoked,
then Edge (u, v) failed after the beginning of the previous invocation of UPDATE in
the real tree to which x belonged.

Proof. If Edge (u, v) was in x’s tree replica when the current UPDATE was invoked,
then the lemma follows from Lemma 6.2. Otherwise, since u was in x’s tree replica
at that time, Edge (u, v) was not in the forest replica of x (otherwise it would have
belonged to the tree replica too). Consider a scenario that caused the insertion of Edge
(u, v) to x’s tree replica in the current UPDATE, so that it can be later deleted. If
u = x, recall that an edge of u joins u’s tree replica only as a result of Merge (the
marking of an edge, the last line in Figure 1). An edge of u cannot be inserted to u’s
tree replica during UPDATE, since this edge is u-sided, relative to every neighbor of u.
(See the way the list Add is computed in Figure 2.2.) This means that Edge (u, v) was
in the tree replicas’ union at the beginning of the UPDATE, and the lemma follows
from lemma 6.2.

We are left with the case that u 6= x. In this case, since (u, v) is not in the tree
replica of x at the beginning of the current UPDATE, it was not in the replica of x at
the termination of the previous UPDATE. (Outside of the execution of an UPDATE,
an edge can leave a tree replica when it belongs to a trimmed subtree, and then leaves
only the replica of the node at which the subtree is trimmed; see lemma 5.12.)

Hence, by Lemma 5.14, Edge (u, v) was not in the real tree of x at the termination
of the previous UPDATE in x’s real tree.

Moreover, by Lemma 5.12 (and since x 6= u), Edge (u, v) was not in the tree replica
of any nodes in x’s real tree when the previous UPDATE (at x’s tree) terminated.
Consider w ∈ Tx that is the first of them to either insert Edge (u, v) or send an
instruction to insert Edge (u, v) or both. See Figures 2.1 and 2.2. By Lemma 6.1,
there are only two cases:

Case (1) (a) Node w first received such an instruction from a node not in Tx, and (b) this
is a post-merge UPDATE.

Case (2) (a) w = u, and (b) this is a post-merge UPDATE, and (c) Edge (u, v) is the edge
used for the merge.

In case (1), first we claim that u is in Tx (and thus in Tw). Note that when a
post-merge UPDATE is invoked, no tree replica in Tx includes a node in T̄u, by Lemma
5.17, except for the replica of the root. The root inserts the merging edge to its replica
at the same operation it also invokes UPDATE (See Figure 1, and the atomicity of
events handling in the model, Section 1.1). Hence, at the time stated in the lemma
(just before this operation), the tree replicas of nodes in Tx do not contain nodes in T̄x.
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Hence, u is in not in T̄x. However, this means that case (1) contradicts the strong loop
freedom invariant (which is guaranteed by Lemma 5.19). Hence, case (1) is impossible.

In the second case, note that Edge (u, v) was non-faulty when this UPDATE was
started by Root u. This means that Edge (u, v) was not faulty after the previous
invocation of UPDATE. The deletion time of Edge (u, v) is even later than that. Recall
that in case (2) we assume that (u, v) is a real tree edge. Since a real tree edge is
deleted by its endpoint only if it fails, it is left to prove that its endpoint did delete
it during the current UPDATE in order to show that Edge (u, v) failed during the
current UPDATE. The lemma now follows from the lemma’s assumption that the edge
was deleted from the replica of Node x during the current UPDATE, and from Lemma
5.12 (since x 6= u).

Let us comment on the first case in the proof. We used the fact that the root
inserts the merging edge to its replica in the same atomic operation of initiating the
post-merge UPDATE. This is used just for the convenience of the proof. Without it,
we would have needed to consider an additional case, where u is the root of the other
merging tree. Had we needed to prove for this case too, the proof would have been
very similar to the proof of the second case.

The next lemma is similar to the previous two, except that the condition is eased
further. Before the lemma, we need an observation.

Observation 6.4 Consider an Edge (u, v) that is deleted from the forest replica of a
node x during some UPDATE invocation U in x’s real tree. Let U2 be the last UPDATE
in x’s real tree during which Edge (u, v) belonged also to x’s tree replica (in addition
to belonging to x’s forest replica). Possibly U2 = U . We claim that such a U2 exists.

Proof. Recall that the tree replica of Node x contains initially only x itself. Moreover,
it is not difficult to see from LOCAL-UPDATE that an edge is never added to the
forest replica without having been added to the tree replica.

Lemma 6.5 Consider an Edge (u, v) that is deleted from the forest replica of a node
x during some UPDATE invocation U in x’s real tree. Let U2 be the last UPDATE in
x’s real tree during which Edge (u, v) belonged also to x’s tree replica (in addition to
belonging to x’s forest replica). Possibly U2 = U . Then, Edge (u, v) failed after the
beginning of the UPDATE preceding U2 in x’s real tree.

Proof. Assume, by way of contradiction, that the lemma does not hold. We prove
that in this case, one of the endpoints, either u or v appears in the tree replica of x
when U is invoked, implying the lemma by Lemma 6.3.

Assume, further, that neither u nor v are not in the tree replica of x just before U
is invoked (otherwise, again, the lemma follows from Lemma 6.3). In particular, x 6= u,
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x 6= v. So, the only place in the algorithm when x may delete (u, v) is when x receives
a DIFF message that includes (u, v) in the Del list (see Figures 2.1 and 2.2). We prove
that x does not receive such a message during U under the above assumptions.

The proof proceeds by a case study according to the type of U : either a pre-merge
UPDATE or a post- merge UPDATE. Each case is further subdivided into two: the
subcase that either u or v appears in the tree replica of other nodes in Tx, and the
subcase that no endpoint of (u, v) appears in the tree replica of any node in Tx.

• U is a pre-merge UPDATE:

− No endpoint of (u, v) appears in the tree replica of any node in Tx:
By Lemma 5.6 this remains the case throughout U . By the algorithm (Figures
2.1 and 2.2), no node sends a DIFF message that includes an edge of u.

− Of of the endpoints (say, u) appears in the tree replica of some node
y ∈ Tx:
By Lemma 5.12, Node u belongs to a subtree that was trimmed in x after the
termination in x of the UPDATE that preceded U . By Lemma 5.19, at that time,
for every real- tree- neighbor k of x, node u is not k-sided with respect to Edge
(k, x). This remains the status until U , by Lemma 5.17. Moreover, u cannot
become k-sided during U , by Lemma 5.6. Hence, no node sends a DIFF message
to x that includes an edge of u.

• U is a post-merge UPDATE:

− Nodes u and v do not appear in the tree replica of any node in Tx:

We prove that neither x, nor any other node in Tx receive a DIFF message that
includes (u, v) in the Del list. Assume the contrary and let x′ be the node closest
to T̄x among the nodes of Tx that received such a DIFF message.

Let p ∈ T̄x be the closest node to x′ on the merged real tree such that an endpoint
of (u, v) appears in the tree replica of p at the beginning of U . Such a node p
exists, otherwise no node sends a DIFF message that includes an edge of either
u or v (by Lemma 5.6, see also the computation of DIFF in Figures 2.1 and 2.2).

By Lemma 5.12, either

– (1) (u, v) belongs to a subtree that was trimmed at the endpoint b of the
merging edge after the UPDATE that preceded U terminated in b;
or

– (2) not case (1) and p ∈ T̄x is an endpoint, b, of the merging edge.

In case (1), the endpoint of (u, v) appearing in p’s replica is b-sided with respect
to every neighbor k of b. By Lemma 5.6 and the strong loop freedom invariant,
no such k sends DIFF messages including an edge of u to b. This means that b
does not send such a message either if b is not the trimming point.
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In the subcase that b is the trimming point, this trimming could not have hap-
pened at Edge (u, v) itself, since otherwise, the lemma holds. Hence, in this case
too, b never sends any DIFF messages that include any edge of u.

Recall that the only node in T̄x that can send messages to nodes in Tx is Node b.
Hence, Nodes u and v cannot enter the tree replica of any node of Tx. Recall that
these nodes are also not in the tree replica of any node in Tx at the beginning of
U . This contradicts the assumption that Node x′ receives a DIFF message that
includes an edge of u.

The remaining case is case (2) where it is assumed that p ∈ T̄x is the endpoint
of the merging edge, and at least one of the endpoints of (u, v) (say Node u)
appears in the tree replica of p at the beginning of U . This means that u was in
the real tree of p at the time that the UPDATE preceding U was invoked in p’s
real tree, by Lemma 5.13. If Edge (u, v) does not appear in the tree replica of p
at the end of the UPDATE preceding U , then the lemma holds by Lemma 5.14.
tree replica of p at the beginning of U .

Consider the path M = {p = l0, l1, l2, ...lq+1 = x′} connecting p to x′ over the real
tree at the beginning of U . At each time during U , this path can be partitioned
into a prefix (initially, containing only node l0 = p) and a suffix (at the beginning
of U , containing all the rest of the nodes on the path). The idea is that every
node li of the prefix has a tree replica that includes (u, v), as well as all the path
up to li. Moreover, the prefix of M ending with li is the suffix of the path (over
li’s tree replica) to u. No node in the suffix of M contains u in its tree replica.

We show by induction, that such a path M(t) exists at any time t throughout
the execution of U . Consider any event that may affect M(t), and consider the
real tree to which x′ belongs after the event. If the event is a failure of an edge
between nodes in M(t), this results with a path M(t+) with the same properties
(but, possibly, either the prefix or the suffix is empty). The only other events
that may influence M(t) are the receptions of DIFF messages by nodes on the
path. Moreover, only a DIFF message from li may affect the claimed properties
of the path at li+1, for i ≥ 0, by Lemmas 5.6, 5.19 and by the code (Figures 2.1
and 2.2). If this is a DIFF message from a node in the suffix to another node in
the suffix, the claimed properties of the path are not affected, since the sender
does not have u in its tree replica. If it is a message from a node in the prefix
to another node in the prefix, it does not affect the claimed properties of the
path, since the tree replica of the sender includes (u, v), as well as the route to
it. Finally, if there is a message from a node li in the prefix to a node li+1 then
li+1 joins the prefix by Lemma 5.9 and Figures 2.1,2.2.

Hence, the only way that a path M(t) looses its claimed properties is that (u, v)
ceases to be in p’s tree replica. A deletion of (u, v) by p cannot be the event
that causes this to happen, since in this case, the lemma follows from Lemma
6.3. Hence, u leaves p’s tree replica because it belongs to a trimmed subtree.
Either this trimming happens at p (but p 6= u, otherwise the lemma holds), or
the trimming is reported to p in a DIFF message, causing u to leave p’s tree
replica. In either way, p no longer can send DIFF messages that delete an edge
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of u. By Lemma 5.19, Lemma 5.6 and the calculation of DIFF in Figures 2.1
and 2.2, no other node on the path can send such a DIFF message either. A
contradiction.

− Node u appears in the tree replica of some node y ∈ Tx:
This subcase is the same as the second subcase for a pre- merge UPDATE.

Let a change in an edge (u, v) be either a failure, or a marking as a tree edge. An
update in a tree replica is either the insertion to the tree replica, or a deletion from it.

Lemma 6.6 Every node x updates its tree replica at most a constant number of times
per change in edge (u, v)

Proof. By Lemma 6.5, every deletion corresponds to a failure that happened since
the last invocation of UPDATE in x’s real tree that updated (u, v) in x’s tree replica.
By Lemma 5.10, this can happen only a constant number of times per such UPDATE.
An edge cannot be reinserted unless deleted first. Hence, the number of insertions is
bounded by the number of deletions. The lemma follows.

Now consider an execution of UPDATE where (u, v) already exists in x’s replica
(and is not deleted again). We claim that no additional insert (ADD) messages con-
taining (u, v) are sent to x. This follows from Lemma 5.9.

Actually, Edge (u, v) is updated at most once in x’s tree replica per topology change.
Since we only counted the order of magnitude of the message complexity, the above
lemma suffices.

Theorem 6.7 If k topological changes occurred, the number of messages (of O(log Id)
bits each) is O(kn).

Proof. Let us first count the number of Ids exchanged between the two endpoints of
an edge that is being marked as a real tree edge. By Lemmas 5.1 and 5.19, the real
forest is indeed a forest at all times. Thus, the marking of a new tree edge by the root
at its endpoints joins together two trees. Thus, for k topology changes, at most k tree
mergers can occur. In each merger, each endpoint sends the other endpoint its forest
replica, this is O(n) Ids.

Next, one ACCEPT message is sent per merger, to the total of k messages. A
REQUEST message may be followed by an ACCEPT message and lead to a merger.
The number of such REQUEST messages is also O(k). One CANCEL message may
also be sent before the merger actually takes place. In this case, the number of such
CANCEL messages is bounded by the number of REQUEST messages, and this is
O(k).
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Alternatively, a REQUEST may be followed by a CANCEL message, and a CAN-
CELLED reply, leading to the cancellation of the planned merger. This happens when
the root of the real tree receives an ALERT message. By the algorithm (see 4.2.4),
such a message is initiated by a node, in the real tree, which noticed a topology change.
By Lemmas 5.1, 5.2 and 5.19, by the FIFO discipline on the links, and by the fact that
every merger is followed by several Broadcasts and Echoes (of FIND, and of UPDATE),
such ALERT messages are forwarded on a tree, and hence do not cycle. Thus, such a
cancellation corresponds to a topology change. Moreover, by the same arguments, this
topology change occurred after the last FIND invocation started in the real tree. Since
each time a merger is canceled, the root performs a new round of UPDATE and FIND,
each cancellation corresponds to a different topology change. (We count a change in
an edge twice—once per endpoint.) Thus, the number of CANCEL and CANCELLED
messages is O(k). Similarly, the number of ALERT messages is O(kn).

As shown in the previous paragraphs, FIND is performed on a tree, once per topol-
ogy change. Thus, the number of messages is O(kn). The argument for BE-ROOT
messages is similar. This is also the case with UPDATE messages, except for the
messages used by LOCAL-UPDATE. The theorem now follows from Lemma 6.6.

Theorem 1.1 now follows from Theorems 5.20 and 6.7.

We analyzed above the complexity per edge- topological- change. Note that a node
failure or recovery can be modeled as a failure (or a recovery) of all of its edges. In
addition, a failing node may loose its memory (besides loosing its edges). Hence, when
it recovers, it may receive updates that insert previously known edges to its Forest.
Since Forest contains O(|V |) entries, this may add an O(|V |) to the complexity of the
recovery of a node. This can be charged to the recovery of the first recovered edge of
that node. Note, that as long as the recovering node has no edges, it is not connected
to the rest of the nodes, and we do not consider it recovered.

7 Conclusion

Let us highlight the main new technique we used in order to save communication.
Consider the case that a real tree is broken into two real trees. Should the nodes
in one of them forget the structure of the other? If they do, and the two real trees
reunite, then each of the O(n) nodes in one tree must be informed of the O(n) edges
of the other real tree. This may lead to O(n2) communication. On the other hand,
while T1 is disconnected from the other real tree T2, the latter may change, or even
be erased completely. What should the nodes of T1 tell a node w that joins T1 about
T2? Anything they tell may be incorrect. In fact, the information w has may be more
up to date than the information possessed by nodes in T1. Thus, it seems that they
should forget this information. Indeed, as explained in the introduction, one of the
reasons for the high communication complexity of previous solutions is sending wrong
information, that has to be corrected later.
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The major saving in communication is obtained mostly by the new technique of
sending implied information. That is, a node learns of the existence of an edge by the
fact it was not instructed to remove it. To see that, let us continue Example 3.1. There,
Node “left” sends Node “right” only the corrections to the tree replica of “right”, rather
than the whole tree replica of “left” (See Drawing 9d). Since “left” did not instruct
“right” to remove Edges (s, t), (t, p), Node “right” can “deduce” that these edges are
in the tree. Based on this deduction, Node “right” now instructs its neighbor w to add
these edges.

The edge used here to merge the tree is edge (u, s), and it is now the responsibility
of u to inform its side of the tree (Nodes “left”, “right” and w) of the structure s’s tree.
This information eventually reaches all of u’s tree, though not every piece of it travels
explicitly over every edge. Only the identity of Edge (u, s) traveled to “left”, and then
to “right”. Then the identities of Edges (u, v), (s, t), and (t, p) traveled to Node w. In
general, u’s tree may be much larger, and every node of it may have a different view of
the real tree of Node s. Every node of it learns every edge in the tree of s. However,
different nodes in u may learn only implicitly about different edges of the real tree of
s.

The preliminary version of this paper inspired follow-up work. In particular, [ACKMP98,
AS97] dealt with the issue above, namely, broadcasting when different intended recip-
ients may have different parts of the broadcast information. The methods suggested
in these papers (for a small part of the task of Subroutine UPDATE) are not as good
as UPDATE in terms of message efficiency, but are better in terms of time complexity.
This gives rise to the hope that the time complexity of our algorithm can be improved
significantly. A method to improve the time complexity to some degree was suggested
in [KP99], but in general the issue of time improvement is still open. Another contribu-
tion of [KP99] is a proposal for defining the “current” size of the network, so that the
complexity can be defined in terms of the “current” size rather than some maximum
size, or a predefined size. Note, that in an asynchronous network, it is not clear what
is a realistic definition of the current size for that purpose. For example, events that
happen far from some node v (or even at other connected components) may change
the size, but can have no impact on v’s behavior (at least, until some time later). At
this point, it is not clear that the definition in [KP99] is the “best” (for example, it is
not clear that no distributed algorithm can estimate the size better). We chose not to
adopt that definition in this journal version.

In [BO99] a topology maintenance algorithm is suggested that is similar to that of
[ACK90] in the sense that the broadcast trees are built using the topology information
that is being broadcast over these trees. However, the paper of [BO99] uses multiple
broadcast trees (one per source). Moreover, these are Reverse Path Forwarding trees,
as opposed to our tree that is arbitrary. Such trees are close to minimum hop trees, and
have the potential of reducing the broadcast time. It is claimed in [BO99], based on
simulation, that the protocol presented there reduces the number of topology update
messages compared to those of flooding based protocols, especially in common cases
when most recipients are leaves. It seems clear that in a worst case, the number
of messages sent by the protocol of [BO99] is much higher than O(V ) per change,
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as opposed to the current paper that obtains O(V ) message complexity per change.
Other algorithms that are more scalable than flooding were proposed later for topology
update, e.g. in [Gar93, JJ94, OTL]. Their complexity seem to be higher (in the worst
case) than the complexity of the algorithm given here). Algorithms were proposed
also for various related dynamic tasks such as updating shortest paths, e.g. [CSFN03,
RV92, Hum91, IR98, Ita91, BBL04]. Some of the above algorithms were for different
models (e.g., the sequential model, or a distributed algorithm for an environment where
no edge may fail during the execution). Others had a higher message complexity (but
provided more information to the nodes, e.g., the whole topology).

The idea of tree maintenance was utilized in a later implementation of a fast link-
state based topology update algorithm used for fast connection reservation and QoS
supported routing in [CHKPRS99]. This implementation disseminates to all nodes
hardware forwarded messages over a multicast tree providing a unified up to date link
state and link utilization information.

A major body of later work on dynamic networks was performed (after the publi-
cation of the conference version of this paper) in the context of self stabilization. For
example, in [DIM93] the maintenance of a tree when a leader is known is described,
and [AKY90] and several later papers describe tree maintenance even when no leader is
known (similarly to the current paper). Similarly, many self stabilizing reset protocols
were suggested, starting from [AKY90, AG94, APV91]. The message complexity of the
current algorithm cannot be compared to self stabilizing network algorithms since the
latter need to send messages indefinitely, even when no events occur. Algorithms for
maintaining other structures besides trees in a distributed environment (also without
translating the algorithm from one for static environments) were also suggested, see,
e.g., [E07].

Another contribution of this paper is the method to avoid deadlock when joining
trees together. Note that the method used by [GHS83] for static networks, may fail
in dynamic networks. In [GHS83] it is assured that some two (real) trees will choose
the minimum edge connecting them. Here, at different times, different edges may be
the minimum. Because of the asynchronous nature of the network, one real tree may
be already aware of a new minimum, while the other real tree may commit to an old
minimum, causing a deadlock. Note, that at some point, a real tree must commit,
since an edge must either be marked at both sides, or not marked at all.

We note that if our algorithm and the MST algorithm of [GHS83] are both used to
construct a spanning tree in a static network where initially every edge is up but no
edge is yet marked as a tree edge, the complexity of algorithm of [GHS83] is O(E +
V logV ) messages, while for the algorithm presented we only proved O(V 2) messages.
Intuitively, this is because of the “levels” mechanism of the algorithm of [GHS83]. Each
level uses up O(V ) messages to add multiple edges to the tree (at least V/2 for the first
level). Our algorithm spends Ω(V ) messages for every tree edge. We do that because,
in a dynamic case, we must respond on-line to topological change as we do not know
when these changes cease. This is a different case than the static one of [GHS83] where
all the edges are known to their endpoints in advance.
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Finally, one main motivation for the maintenance of a spanning tree is to use
it for broadcasting topology updates, whenever there is a topology change. Such a
mechanism (that does not use unbounded counters) was presented in [ACK90].
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A Appendix: details about subroutines

that use known techniques

A.1 Appendix: details about the distributed termination de-
tection (Section 4.1.2.1)

Let us describe that termination detection algorithm briefly. That algorithm was de-
signed for a computation that starts in a single node, which joins the computation
following some signal from the outside. Every other node joins the computation after
receiving a message from a node that has already joined the computation. In our case,
the root of the real tree is “signaled” to start the computation of UPDATE when the
main algorithm of Figure 1 at the root reaches the point when the root is to start the
execution of UPDATE. Every non-root node v in the real tree joins the computation (of
UPDATE) upon receiving the broadcast message of UPDATE from some other node u
already in the computation (of UPDATE), that instructs them to join the computation.
(We view the messages of LOCAL-UPDATE as a part of the messages of UPDATE.)
Let us term u the predecessor of v.

The main idea is that of a Broadcast and Echo search that appears also in e.g.
[BGJ+85, Seg83, AM86, GHS83]. That is, a node u that receives a message (of that
computation) from a node v “owes” v an acknowledgement message (not a part of
the underlying computation, this is an “extra” messages added for the sake of the
termination detection). A node pays what it owes immediately, except for one of the
messages it owes to its predecessor. (That is, if v owes its predecessor more than one
acknowledgement, it sends all these acknowledgements but one.) Node v pays the last
acknowledgement to its predecessor only when nobody owes v anything. At that time,
v leaves the computation. It is then possible that v joins the computation again if it
receives another message of the same computation (in a general application of [DS80] it
is possible that at that time, v has a predecessor that is not the same as the predecessor
v had when it joined the same computation for the first time.) The root detects the
termination when nobody owes it any acknowledgement. For more details, a formal
description and proofs please see [DS80].

A.2 Appendix: Details about subroutine FIND (Section 4.1.2.2)

As mentioned above, the tool used to find the minimum outgoing edge is exactly the
one used in [GHS83]. There it uses messages called “find” and “found”. This tool
also became a standard one. It is called, sometimes, Broadcast and Echo search,
e.g. [BGJ+85, DS80, Seg83, AM86]. Note that the usage of this tool is based on the
assumption that each node already “knows” which of its adjacent edges is outgoing.
The method for realizing this assumption in [GHS83] is different than the one used
here, described above in Section 4.1.2.1. However, given the assumption, finding the
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minimum outgoing edge of the entire real tree is exactly the same. For the sake of
completeness we describe this subtask in a little more detail. The Broadcast part
is similar to the one explained for Subroutine UPDATE. In the Echo part of this
subroutine, each node waits for the reports from all its children. (A leaf does not need
to wait.) Next, the node compares the minimum weight reported by its tree children,
and the weight of the lightest of its own outgoing edges (if such exist). The minimum
between the two is reported (in an Echo message) back to its parent. The search
terminates when the root receives an Echo from all of its children, and compares their
minimum to its own lightest outgoing edge. The minimum edge reported to the root
is selected to be the minimum outgoing edge of the real tree.

A.3 Appendix: Details about subroutine ROOT-MIGRATION
(Section 4.1.3)

4.1.3.1 The following technique too is taken from [GHS83]. Consider again the search
for the minimum outgoing edge (see 4.1.2.2). The following is used in order to establish
a route from the root to the endpoint of the minimum outgoing edge. Consider a node
that is going to send an Echo report to its parent with the weight of the minimum out-
going edge among those that are either adjacent to it or were reported by its children.
If this minimum was reported by a child, then the node also remembers a pointer to
this child. The collection of these pointers is a route from the root to the endpoint of
the minimum outgoing edge. Thus, the root can migrate along these pointers to the
endpoint of the minimum edge.

4.1.3.2 This subsection completes that parts copied from [GHS83]. Recall that a root
r is a node with no parent. Thus, to transfer the rootship to one of its children, u, the
root (1) sets its parent pointer to point at u, and (2) sends a message BE-ROOT to u
over Edge (r, u) telling u to become a root. When u receives this message, it sets its
own parent point to nil, thus becoming a root. This process is repeated until the root
is the endpoint of the minimum outgoing edge, or until the root is made aware of a
topological change (see Section 4.2).

52



www.manaraa.com

B Appendix: Code for node v

The algorithm of node v

A signal is always given to self and received from self.
If there are more than one event to handle, then a topology change has highest priority
and an ALERT message is second in priority. The priority of the other events is lower.

Initially, Parent = Chosen-Edge = nil, Tree = Forest = Min-Edges = ∅.
No edge is marked, every flag is false.

Main program (distributed implementation)

Whenever message ALERT is received from a child or a topology change occurs in
an edge of v or signal Edge-Marked (* is received from self *)

(* The subroutines too perform actions for these events, see code for subroutines. *)
If the event was the failure of a marked edge (v, u) Then

unmark (v, u); (*unmarking takes the edge out of Forestv *)
If Parent = u Then Parent ← nil;

If the event was a topology change or an ALERT message
If Alert-Pending = false Then Alert-Pending ← true; (* Notifying root of event *)
If Parent 6= nil Then send message ALERT to Parent;
Else If Handshake-Pending And Chosen-Edge∈ Treev(v) (* REQUEST
sent, not over (v, u) *) Or Update-Pending Or Find-Pending

Then Alert-Pending← true;
Else Signal Perform-Update.

Whenever signal Update-Before-Find-Terminated
Signal Perform-Find;

Whenever signal Find-Terminated
If Alert-Pending
Then Signal Perform-Update;
Else Signal Transfer-Root((x, y)).

Whenever signal Transfer-Terminated((x, y)) (* v = x *)
(*edge (x, y) is not faulty, otherwise would have encountered ALERT*)
(*topo change has highest priority, ALERT second, others less*)
Signal Merge-Trees((v, y)).
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Subroutine Tree merging handshake

Whenever signal Merge-Trees((v, y))
Handshake-Pending ← true;
Chosen-Edge ← (v, y);
If v < y Then send message REQUEST to y;
Else If Request-Received(y) Then

Request-Received(y) ← false;
Send message ACCEPT to y;
Update-During-Handshake ← true;
Signal Perform-Update.

Whenever signal Update-During-Handshake-Terminated
Update-During-Handshake ← false;
If Chosen-Edge = (v, y) 6= nil (* otherwise may have failed meanwhile *)
Then

If v < y Then
mark (v, y); (* Insert to Forestv *)
Parent = y;
Send message New-Child to Parent;
Chosen-Edge ← nil;
Handshake-Pending ← false.

Else If New-Child-Received(y) Then
mark (v, y);
Chosen-Edge ← nil;
New-Child-Received(y) ← false;
Signal Edge-Marked;
Handshake-Pending ← false.

Else Update-During-Handshake-Terminated ← true.

Whenever message New-Child is received from k
If Chosen-Edge = (v, k) Then

If Update-During-Handshake-Terminated Then
mark (v, y);
Chosen-Edge ← nil;
Update-During-Handshake-Terminated ← false;
Signal Edge-Marked;
Handshake-Pending ← false.

Else New-Child-Received(k) ← true.

Whenever message REQUEST is received from a neighbor k
If Parent 6= nil or Chosen-Edge 6= (v, k) Then Request-Received(k) ← true;
Else (* root is waiting to (v, k) *)

Send message ACCEPT to k;
Update-During-Handshake ← true;
Signal Perform-Update.
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Whenever message ACCEPT is received from neighbor k
Update-During-Handshake ← true;
Signal Perform-Update.

Whenever message CANCEL is received from neighbor k
If edge (v, k) is not marked and ¬ Chosen-Edge = (v, k) Then

Send message CANCELLED to k;
Request-Received((v, k)) ← false.

Whenever message ALERT is received from a child or a topology change occurs in
an edge of v or signal Edge-Marked

(* Main and the other subroutines also perform actions for these events, see there. *)
If the event was the failure of an unmarked edge (v, u) Then

Request-Received(u)← false;
If Chosen-Edge= (v, u) then

Chosen-Edge← nil;
Handshake-Pending ← false;
Update-During-Handshake← nil.
Update-During-Handshake-Terminated← nil;
New-Child-Received(u) ← false;

Else If Parent = nil Then
If there exists an edge (v, w), w 6= u, such that Request-Sent((v, w))
Then send message CANCEL to w;

Whenever message CANCELLED is received from k
If Chosen-Edge = (v, k) then Chosen-Edge ← nil;
Handshake-Pending ← false.
(* Main will also signal Perform-Update *)

UPDATE, with INTERRUPTIONS

Whenever message Perform-Update is received from Parent Or signal Perform-Update
If ¬ Update-Pending Then

Update-Pending ← true;
Alert-Pending ← false
For every child u (* (v, u) ∈ Tree And u 6= Parent *)

Send message Perform-Update to u;
Update-Ack(u) ← false.

Invoke LOCAL-UPDATE; (*with termination detection, see Section 4.1.2.1 *)
Local-Termination ← false.

Else Alert-Pending ← true. (* Perform another Update when the current one ends *)
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Whenever the termination of LOCAL-UPDATE is detected
Local-Termination ← true;
If for every child w Update-Ack(w) Then perform procedure Report-Update.

Whenever message Update-Echo is received from a child u
Update-Ack(u) ← true;
If for every child w Update-Ack(w) And Local-Termination
Then perform Procedure Report-Update.

Procedure Report-Update
Local Termination ← false;
Update-Pending ← false;
For every child w, Update-Ack(w) ← false;
If Parent 6= nil Then send message Update-Echo to Parent;
Else if Alert-Pending then Signal Perform-Update

Else If Update-During-Handshake then Signal Update-During-Handshake-Terminated
Else Signal Update-Before-Find-Terminated;

FIND, with interruptions

Whenever message Perform-Find from Parent is received from Parent or signal Perform-Find
Find-Pending ← true;
Min-Edges ← ∅;
For every child u

Send message Perform-Find to u;
Find-Ack(u) ← false.

If v has no children Then perform procedure Report-Find.

Whenever message Find-Echo(edge (x, y)) is received from child u
Min-Edges ← Min-Edges

⋃
{(x, y)};

Find-Ack(u) ← true;
If for every child w Find-Ack(w) Then perform procedure Report-Find.

Procedure Report-Find
Find-Pending ← false;
Let (x, y) = min(∗weight∗)({(v, w)| 6 ∃(w, z) ∈ Tree }

⋃
Min-Edges);

If Parent 6= nil Then send message Find-Echo((x, y)) to Parent;
Else Signal Find-Terminated((x, y));
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Rootship Transfer with interruptions

Whenever Transfer-Root((x, y)) message is received from Parent or Transfer- Root((x, y)) signal
(* If next edge on route to x failed then the topo change treatment *)
(* in Main already removed that edge from Tree, since a topo change *)
(* event is handled with a higher priority *)
If Alert-Pending Or 6 ∃k such that (v, k) ∈ Tree and (x, y) 6∈

My-Side(k) Or (x = v And (x, y) is faulty)
Then Signal Perform-Update (* restart Main *)
Else If x = v Then

Parent ← nil;
Signal Transfer-Terminated.

Else
let k be such that (v, k) ∈ Tree And (x, y) 6∈ My-Side(k);
Send message Transfer-Root((x, y)) to k;
Parent ← k.
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